
(1)

The VTR Project:
Architecture and CAD for FPGAs

from Verilog to Routing

University of Toronto,
University of New Brunswick
City University of Hong Kong

Miami University

J.Rose, J. Luu, C-W Yu, O. Densmore, J. Goeders,
A. Somerville, K. Kent, P. Jamieson and J. Anderson

Verilog-To-Routing (VTR) Project Goal

Goal is to Enable the Exploration of:

1.  Hypothetical FPGA Architectures and
2.  New CAD Algorithms for FPGAs

(2)

Pure-Play FPGA

Video

crypt

vision

FPGA

Many
Core

Memory

CPU

CPU

CPU

FPGA Embedded in SoC

Objectives: A ‘Super-VPR’

1.  Like VPR, but a larger CAD flow, starting at HDL level
–  Serve as a basis for even longer flow, above HDL synthesis

2.  Accurately model sophisticated, modern, hypothetical
FPGA architectures
–  With heterogeneity, hierarchy, modes, complex clocking
–  Coarse Grained architectures
–  Energy, speed and area modeling, based on electrical design
–  Model variation, reliability and other process effects

(3)

Objectives, continued

3.  Provide platform for FPGA CAD algorithm research
–  A complete flow that you can easily change part of
–  Be a basis of comparison

4.  Be Robust
–  quality software that can be used for many purposes, reliably

5.  Provide large realistic benchmarks that work in flow
–  As important as the software itself

(4)

This is Scary Big

n  Big FPGA companies have 100s of people doing this
–  Small ones have a dozen or more

n  Commercial flows don’t support the exploration of
hypothetical FPGA architectures
–  Described using an Architecture Description Language
–  Harder than targeting known devices!
–  Sotware must work on all architectures that can be conceived

and described

(5)

This is too big for a single academic enterprise

VTR: A World-Wide Collaboration

n  Toronto: Jason Luu, Jason Anderson, Vaughn Betz,
Opal Densmore, Cong Wang, Peter Milankov

n  New Brunswick: Ken Kent, Ash Furrow, Paddy O'Brien,
Joey Libby, Shubham Jain, Konstantin Nasartschuk,
Andrew Somerville

n  Penn: Rafi Rubin
n  Miami Ohio: Peter Jamieson
n  City University of Hong Kong: Chi Wai Yu
n  UBC: Jeff Goeders, Eddie Hung
n  Texas Instruments: Joyce Kwong, Jeff Rudolph
n  Altera: David Grant and Mark Jarvin

(6)

Key: Weekly Meeting on G+ Hangout

(7)

Big Picture of The Flow

(8)

Verilog Circuits

Timing and Area Estimation

Elaboration

Synthesis & Tech Map FPGA
Architecture

File

ODIN II

ABC

Packing

Placement

Routing

VPR

Previous Version of VTR: 1.0 Alpha

n  Released 1 Year Ago
–  ODIN II, ABC, VPR 6.0 ‘alpha’
–  Contains VPR with merged packer

n  New Logic Block architecture description capability
–  Far more complex logic block architectures can be described
–  And associated packer

(9)

Context: Prior Logic Blocks Were

Either:
1.  A fully connected cluster of Basic

Logic Elements:

or

2.  A monolithic block that had to be

completely generated by the up-
stream tools
–  A limited form of heterogeneity

(10)

With VPR 6.0 we added Complex Blocks

n  Can describe essentially arbitrary netlist of primitives
within the block
–  Primitives can be connected directly, through muxes or crossbars
–  Encased in any number of levels of hierarchy
–  Each level of hierarchy can be set to different modes, which

would be set by configuration bits

(11)

Also Memories and Multipliers & Modes

(12)

4K Bit RAM

Also Memories and Multipliers & Modes

(13)

4K x 1

2K x 2

1K x 4

-or-

-or-

Single-Port RAM Dual-Port RAM

Allows Fracturable LUTs

Either One 6-LUT:

14

6-LUT

5-
LUT

5-
LUT

- or - Two 5-LUTs with sharing:

Gave Rise to New & Hard Packing Problem

n  Given: the netlist of logical primitives and the Complex
block which can receive those primitives

n  Determine: where to pack the logical primitives so that:
–  Everything can be connected within and without the block
–  So that optimization goals of area & speed are met

n  Last year we presented a basic packing algorithm that
could handle the hierarchy, modes and interconnect
–  But it wasn’t timing driven
–  Nor was that version of VPR, because timing analysis was

broken by the complexity of the block

(15)

The New Release: VTR 1.0 Full

(16)

ODIN II: Verilog Elaboration

(17)

Verilog Circuits

Packing

Placement

Routing

Modeling

Elaboration

Synthesis & Tech Map

ODIN II

ABC

VPR

ODIN II – Verilog Elaboration

n  Input:
–  Verilog HDL-level circuit
–  FPGA Architecture Description File

• Describes any non-standard logical primitives

n  Output: BLIF netlist
–  Soft Logic LUTs
–  Properly split Multipliers & Memories
–  Instantiated primitives that are parts of new Complex Blocks

(18)

Architecture File & ODIN II

n  ODIN II reads the same architecture file as VPR
–  There is a separate section that describes the primitves

n  For example, the purple block below, call it a ‘Flurch’

(19)

The Primitive is Declared in Arch File

n  Like this:
<model name=”Flurch">!
 <input_ports>!
 <port name=”fin1"/>!
 <port name=”fin2"/>!
 </input_ports>!
 <output_ports>!
 <port name=”fout1"/>!

! !<port name=”fout2"/>!
 </output_ports>!
 </model>!

(20)

Also Describe the Physical Structure

<pb_type name=”Flurch_in_Block" !
blif_model=".subckt Flurch” num_pb="1">!
!
 <input name=”fin1" num_pins=“1” />!
 <input name=”fin2" num_pins=“1” />!
 <output name=”fout1" num_pins=“1” />!
 <output name=”fout2" num_pins=“1” />!
!
</pb_type>!
!

(21)

Instantiation in User’s Verilog Code

...!
!input d1,d2;!
!wire fd1, fd2;!

...!
!Flurch My_Flurch(d1, d2, fd1, fd2);!

!
...!
 !

(22)

ODIN II Produces output BLIF

.model Test_Flurch!
.inputs d1, d2!
.outputs fd1, fd2!
!
.subckt Flurch fin1=d1 fin2=d2 fout1=fd1
fout2=fd2!
!
.names top.flurch+My_Flurch^fout1 top^fd1 …!
1 1!
!

(23)

New Features of ODIN II

n  Simulation engine for Verification of tool flow
–  ODIN now contains a built-in simulator that can check if output is

correct
–  Check Verilog vs. BLIF produced by other tool
–  Ultimately will use (not yet) to check logical correctness of

downstream flow

n  Can accept test vectors or generate random test vectors

(24)

New Features of ODIN II

1.  Enhanced Language Coverage:
–  Support for generic hard blocks

2.  Macro pre-processor now permits:

–  ifdef, define, else, endif and include !
–  Has improved ability to port new benchmarks to ODIN II

3.  Ongoing bug fixing in response to benchmark
processing

(25)

ABC: Logic Synthesis

(26)

Verilog Circuits

Packing

Placement

Routing

Modeling

Elaboration

Synthesis & Tech Map

ODIN II

ABC

VPR

VPR: Packing,
Placement & Routing

(27)

Verilog Circuits

Packing

Placement

Routing

Modeling

Elaboration

Synthesis & Tech Map

ODIN II

ABC

VPR

VPR 6.0 Full Key Feature: Timing-Driven!

n  Can now do timing analysis inside complex blocks
–  Needed to build the timing graph of arbitrary structure inside the

logic block
–  New version of architecture file now includes ability to specify

timing of primitives that make up blocks
–  Specify delay, set-up, clk-to-q, and max operating frequency

(28)

Timing-Driven Packer

n  Previous version of packer was only area-driven
n  New algorithm is now timing-driven

–  as good as old timing-driven packer on classical LUT-cluster
architectures

–  Can do much more complex architectures

n  Basic algorithm is greedy: select candidate & test
n  Test for feasibility of primitive in block includes routing
n  Packer is very general, but quite slow

–  working on speed now

(29)

Timing-Driven Placement & Routing

n  Returned with the advent of the timing analysis, no other
change needed

n  Numerous other enhancements
–  Sped up routing again, still needs work
–  Cleaned up memory usage

(30)

Benchmark Circuits

(31)

Verilog Circuits

Packing

Placement

Routing

Modeling

Elaboration

Synthesis & Tech Map

ODIN II

ABC

VPR

Benchmarking Goal: Go larger!

n  One crucial reason for adding ability to process
memories and multipliers is that all modern large circuits
include these structures

n  With this ability, we can now include much larger circuits
in our flow

n  Key Realization: Benchmarks must be released, like
software, alongside the version of the software that they
work with!

(32)

Benchmark Processing: Large Circuits

One of the new circuits:
n  ‘MCML’

–  Previous UofT research project on Photo-Dynamic Therapy for
Cancer Treatment

–  95,890 6-LUTs
–  53,280 Flip-Flops
–  6,343 x 10 Fracturable 6-LUT Clusters
–  10 Memories
–  30 Multipliers

n  This and one other circuits took 1 person-summer
–  Verified through simulation after porting
–  Needed to develop/port math cores

(33)

Benchmarks Run Through Flow

n  Previously released circuits have been updated to work
with new flow, now 19 total.
–  Added new circuits as above

n  Example run through 40nm CMOS FPGA architecture:
–  Fracturable 6-input LUTs as basic soft logic primitive
–  Soft cluster contains 10 Fracturable 6-LUTs
–  144K bit Dual Port RAM
–  36x36 Multipliers, Fracturable to 18x18 or 9x9

(34)

Benchmarks – Size Data

(35)

Benchmark Run: Timing vs. Non-Timing

(36)

Example Use of VTR Flow in FPGA
Architecture Exploration

(37)

Example Use by Architect

n  Chi Wai Yu Ph.D. thesis at
Imperial was to architect a
floating point unit inside an
FPGA:
–  He originally created a custom

version of VPR to model and
experiment with

n  Can he use new VTR flow
instead?
–  without any software modifications

(38)

The FPU Block

(39)

Success!

n  Capturing the FPU shook out some bugs
n  Were able to run original Verilog-based circuits through

flow, and obtain measurements of speed and area

n  Able to compare:

FPGA with floating-point block vs. FPGA without

(40)

Speed of Soft FPU vs. Hard

(41)

n  Original Research had ratio at 4 times
–  Soft logic FPGA had carry chains, which made soft faster
–  A key future work is to include special carry logic

Area of Soft FPU vs. Hard

(42)

n  Original Research had ratio at 24 times
–  Is in the same ball park – different base FPGA

Effort to Capture New Architecture v. Old

n  Original Research required roughly 1 person-year of
work to modify VPR 4.3 to handle FPU

n  This work required roughly 2 person-weeks, including
VPR debug time.

(43)

The Release: Last Week: VTR 1.0 Full

(44)

Location

n  Original Location:
–  http://www.eecg.utoronto.ca/vtr

n  Permanent, new Location, in Google Archive:
–  http://code.google.com/p/vtr-verilog-to-routing/

(45)

Google Archive Provides

n  New Documentation and Tutorials for Whole Flow
n  Issue Tracking – anyone can report a bug
n  Software Development Trunk now public

(46)

License

(47)

NEW: VTR Fully Open Source

n  ODIN II was already Open Source
n  ABC (from Berkeley) was also Open Source

n  VPR is now, as of last week, fully Open Source
–  No restrictions, MIT license

–  For VTR download, still do ask for name of user, but is not
required to obtain software.

(48)

Future Work

(49)

Future VTR Work: Odin II

n  Generate Carry Chain elements from arithmetic
n  Support Verilog Parameters
n  Infer Memory from 2D Arrays
n  Continued improved language coverage

–  And general bug fixing

n  Extend Simulation Verification to downstream flow steps

(50)

Future VTR Work: ABC

n  Move to more recent version of ABC
–  Current version is old

n  Find way to have it handle multiple clocks
–  Rather than remove clocks!

n  Use and Test efficacy of White Blocks
–  Which permit optimization across fixed boundaries, both hard

and soft

(51)

Future VTR Work: VPR Algorithms

n  Better Packing Algorithms
–  Will attack pack time for common cases
–  Resort to routing only when absolutely necessary
–  Handle Carry Chains

n  Placement
–  Algorithms that scale in modern world of slow processors
–  Handle Carry Chains

(52)

Future VTR Work: VPR Modeling

n  Timing Analysis
–  Support multiple clocks
–  Hold time analysis
–  Support arrival time specification

n  Area Modeling
–  Capture transistor-level design of complex blocks
–  Automated transistor-level optimization (sizing) of blocks

n  Energy/Power Modeling

(53)

Future VTR Work: VPR Architecture

n  Support Carry Chains
–  In architecture definition for intra-block and extra-block

n  Bus-based routing for coarse-grained FPGAs

n  Architecture of Clock spines/trees

(54)

VTR: A Long-Term Ongoing Project

n  Trying to serve the community

n  Weekly meeting via Google+ Video
–  Almost every Thursday at 11am Eastern Time

n  Let us know if you’d like to help!

(55)

