The VTR Project:
Architecture and CAD for FPGAs
from Verilog to Routing

J.Rose, J. Luu, C-W Yu, O. Densmore, J. Goeders,
A. Somerville, K. Kent, P. Jamieson and J. Anderson

University of Toronto,
University of New Brunswick
City University of Hong Kong

Miami University

(1)

Verilog-To-Routing (VTR) Project Goal

Goal is to Enable the Exploration of:

1. Hypothetical FPGA Architectures and
2. New CAD Algorithms for FPGAs

Pure-Play FPGA FPGA Embedded in SoC
0 5 5 5 1 CPU Video

EEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEE

I I O =

EEEEEEEEEEEEEEEE]

EEEEEEEEEEEEEEEE];

EEEEEEEEEEEEEEEE CPU crypt
NN EEEEEEEE FPGA ry

S IEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEE
8 L L

lIllllllIlllllll vision

AEEEEEEEEEEEEEEE

AEEEEEEEEEEEEEEE

llllllllllllllll

Objectives: A ‘Super-VPR’

1. Like VPR, but a larger CAD flow, starting at HDL level

— Serve as a basis for even longer flow, above HDL synthesis

2. Accurately model sophisticated, modern, hypothetical
FPGA architectures
— With heterogeneity, hierarchy, modes, complex clocking
— Coarse Grained architectures
— Energy, speed and area modeling, based on electrical design
— Model variation, reliability and other process effects

Objectives, continued

3. Provide platform for FPGA CAD algorithm research
— A complete flow that you can easily change part of
— Be a basis of comparison

4. Be Robust

— quality software that can be used for many purposes, reliably

5. Provide large realistic benchmarks that work in flow
— As important as the software itself

This Is Scary Big

B Big FPGA companies have 100s of people doing this

— Small ones have a dozen or more

B Commercial flows don’t support the exploration of
hypothetical FPGA architectures
— Described using an Architecture Description Language

— Harder than targeting known devices!
— Sotware must work on all architectures that can be conceived

and described

[@*’ This is too big for a single academic enterprise

VTR: A World-Wide Collaboration

B Toronto: Jason Luu, Jason Anderson, Vaughn Betz,
Opal Densmore, Cong Wang, Peter Milankov

B New Brunswick: Ken Kent, Ash Furrow, Paddy O'Brien,
Joey Libby, Shubham Jain, Konstantin Nasartschuk,
Andrew Somerville

: I\P,I?nn:- Raf.l I?ubln | ‘;;%
iami Ohio: Peter Jamieson | N

B City University of Hong Kong: Chi Wai Yu *

B UBC: Jeff Goeders, Eddie Hung

B Texas Instruments: Joyce Kwong, Jeff Rudolph

B Altera: David Grant and Mark Jarvin

Key: Weekly Meeting on G+ Hangout

Jonathan Rose - Jan 26, 2012 (edited) - Hangout - Limited

Jonathan Rose hung out with 5 people.

; Jonathan Rose - Feb 2, 2012 (edited) - Hangout - Limited

Jonathan Rose hung out with 5 people.

Big Picture of The Flow

Verilog Circuits
ODIN II Elaboration j
ABC Synthesis & Tech Map FPGA
:
_ Packing [

Architecture
File

¥

VPR
‘

Timing and Area Estimation

(8)

Previous Version of VIR: 1.0 Alpha

B Released 1 Year Ago

— ODIN I, ABC, VPR 6.0 ‘alpha’
— Contains VPR with merged packer

B New Logic Block architecture description capability
— Far more complex logic block architectures can be described
— And associated packer

Context: Prior Logic Blocks Were

Either:

1. A fully connected cluster of Basic
Logic Elements:

or

2. A monolithic block that had to be

completely generated by the up-
stream tools

— A limited form of heterogeneity

(10)

With VPR 6.0 we added Complex Blocks

B Can describe essentially arbitrary netlist of primitives
within the block
— Primitives can be connected directly, through muxes or crossbars
— Encased in any number of levels of hierarchy

— Each level of hierarchy can be set to different modes, which
would be set by configuration bits

(11)

Also Memories and Multipliers & Modes

(12)

Also Memories and Multipliers & Modes

(13)

Allows Fracturable LUTs

Either One 6-LUT: -or- Two 5-LUTs with sharing:

Gave Rise to New & Hard Packing Problem

B Given: the netlist of logical primitives and the Complex
block which can receive those primitives

B Determine: where to pack the logical primitives so that:
— Everything can be connected within and without the block
— So that optimization goals of area & speed are met

B |ast year we presented a basic packing algorithm that
could handle the hierarchy, modes and interconnect
— But it wasn’t timing driven

— Nor was that version of VPR, because timing analysis was
broken by the complexity of the block

(15)

The New Release: VIR 1.0 Full

(16)

ODIN II: Verilog Elaboration

o 1 I B ElaBeration |

F\:Tel Synthesis & Tech Map
¥
VPR |_Packing |

$

Placement

$

¥

Modeling

(17)

ODIN Il - Verilog Elaboration

B Input:
— Verilog HDL-level circuit
— FPGA Architecture Description File
» Describes any non-standard logical primitives

B OQutput: BLIF netlist

— Soft Logic LUTs
— Properly split Multipliers & Memories
— Instantiated primitives that are parts of new Complex Blocks

(18)

Architecture File & ODIN I

B ODIN Il reads the same architecture file as VPR
— There is a separate section that describes the primitves

B For example, the purple block below, call it a ‘Flurch’

(19)

The Primitive is Declared in Arch File

B Like this:
<model name="Flurch">
<input ports>
<port name="finl"/>
<port name="fin2"/>
</input ports>
<output ports>
<port name="foutl"/>
<port name="fout2"/>
</output ports>
</model>

(20)

Also Describe the Physical Structure

<pb type name="Flurch in Block"
blif model=".subckt Flurch” num pb="1">

<input name="finl" num pins=*“1" />
<input name="fin2" num pins=“1" />
<output name="foutl" num pins=“1" />

<output name="fout2" num pins=“1" />

</pb_ type>

(21)

Instantiation in User’s Verilog Code

input dl,d2;
wire fdl, £d2;

Flurch My Flurch(dl, d2, fdl, £d2);

(22)

ODIN Il Produces output BLIF

.model Test Flurch
.lnputs dl, d2
.outputs fdl, £d2

.subckt Flurch finl=dl fin2=d2 foutl=fdl
fout2=£fd2

.names top.flurch+My Flurch”foutl top”fdl ..

11

(23)

New Features of ODIN Il

B Simulation engine for Verification of tool flow

— ODIN now contains a built-in simulator that can check if output is
correct

— Check Verilog vs. BLIF produced by other tool

— Ultimately will use (not yet) to check logical correctness of
downstream flow

B Can accept test vectors or generate random test vectors

(24)

New Features of ODIN Il

1. Enhanced Language Coverage:
— Support for generic hard blocks

2. Macro pre-processor now permits:
— ifdef, define, else, endif and include
— Has improved ability to port new benchmarks to ODIN I

3. Ongoing bug fixing in response to benchmark
processing

(25)

ABC: Logic Synthesis e

ODIN II
F\:Ted Synthesis & Tech Map |
VPR |_Packing |

$

Placement

“Routing |
2
Modeling

(26)

VPR: Packing,

Placement & Routing -
WS nthesis & Tech Map

*

Verilog Circuits

VPR

$

Placement

$

¥

Modeling

(27)

VPR 6.0 Full Key Feature: Timing-Driven!

B Can now do timing analysis inside complex blocks

— Needed to build the timing graph of arbitrary structure inside the
logic block

— New version of architecture file now includes ability to specify
timing of primitives that make up blocks

— Specify delay, set-up, clk-to-q, and max operating frequency

Timing-Driven Packer
.|
B Previous version of packer was only area-driven

B New algorithm is now timing-driven

— as good as old timing-driven packer on classical LUT-cluster
architectures

— Can do much more complex architectures

B Basic algorithm is greedy: select candidate & test
B Test for feasibility of primitive in block includes routing

B Packer is very general, but quite slow
— working on speed now

(29)

Timing-Driven Placement & Routing

B Returned with the advent of the timing analysis, no other
change needed

B Numerous other enhancements
— Sped up routing again, still needs work
— Cleaned up memory usage

(30)

| Verilog Circuits |
ODIN Il Elaboration
FN-Te} Synthesis & Tech Map

Benchmark Circuits

VPR |_Packing

$

Placement

$

¥

Modeling

(31)

Benchmarking Goal: Go larger!

B One crucial reason for adding ability to process
memories and multipliers is that all modern large circuits

Include these structures

B With this ability, we can now include much larger circuits
in our flow

B Key Realization: Benchmarks must be released, like
software, alongside the version of the software that they

work with!

(32)

Benchmark Processing: Large Circuits

One of the new circuits:
H ‘MCML’

— Previous UofT research project on Photo-Dynamic Therapy for
Cancer Treatment

— 95,890 6-LUTs

— 53,280 Flip-Flops

— 6,343 x 10 Fracturable 6-LUT Clusters
— 10 Memories

— 30 Multipliers

B This and one other circuits took 1 person-summer
— Verified through simulation after porting
— Needed to develop/port math cores

(33)

Benchmarks Run Through Flow

B Previously released circuits have been updated to work
with new flow, now 19 total.

— Added new circuits as above

B Example run through 40nm CMOS FPGA architecture:
— Fracturable 6-input LUTs as basic soft logic primitive
— Soft cluster contains 10 Fracturable 6-LUTs
— 144K bit Dual Port RAM
— 36x36 Multipliers, Fracturable to 18x18 or 9x9

(34)

Benchmarks — Size Data

257 32 42065 6100 0 11 152
36 100 6002 445 0 0 92
271 192 2907 1667 1 0 72
99 130 416 233 1 0 50
162 96 470 193 0 5 64
66 96 299 96 0 5 60
114 102 18950 6627 9 8 132
114 102 67543 20893 9 32 208
36 33 95890 53280 10 30 166
511 553 5069 2459 9 0 92
311 156 234 36 3 0 48
195 205 1731 983 3 0 74
367 394 2447 612 2 1 86
239 305 2070 1423 1 18 78
38 36 1140 431 0 0 58
157 197 11494 13405 0 0 78
132 145 10020 11789 0 152 120
149 182 29977 18416 0 564 196
10 30 205 102 0 0 34

(35)

Benchmark Run: Timing vs. Non-Timing

3933 1.82E-08 2.17E-08 1.19
510 5.13E-09 6.48E-09 1.26
222 5.42E-09 6.77E-09 1.25

35 2.77E-09 2.84E-09 1.02
37 1.33E-08 1.43E-08 1.08
25 1.11E-08 1.21E-08 1.09

1901 4.68E-08 5.64E-08 1.21

6790 4.67E-08 6.55E-08 1.40

6343 6.44E-08 6.78E-08 1.05
405 6.42E-09 7.11E-09 1.11

16 3.69E-09 3.69E-09 1.00
144 5.29E-09 6.06E-09 1.15
204 1.13E-08 1.67E-08 1.48
168 3.88E-09 4.51E-09 1.16
100 1.04E-08 1.27E-08 1.23
828 3.32E-09 4.70E-09 1.42
854 3.63E-09 5.33E-09 1.47

2381 1.31E-08 1.85E-08 1.41

15 2.97E-09 3.31E-09

Example Use of VIR Flow in FPGA
Architecture Exploration

(37)

Example Use by Architect

. Chl Wal YU PhD theS|S at Fine-grained units

Imperial was to architect a e S st S i

. . g on . oooo gooooo oooo

floating point unit inside an 0o0o[=S) 000000 [=S)|0000

oooo || oooooo |E=|oooo

FPGA coger dagie —ases

— He originally created a custom oooo|=|oooooo |Sfoooo

version of VPR to model and 9800 5] auanbd jeglasoa

experiment with nHBE—Haaana——aaoa

0000|—| 000000 |— 000D

cooo|c=|oooooo |==]aaaa

oooo oooooo 0000

B Can he use new VTR flow aooo|=|gooooa (= (aaao

instead? oooo ooooono oooo
— without any software modifications Coarse-grained units with

embedded floating point units

(38)

The FPU Block

Control Signal Input

T T Status Flag Output

T
control status control | status oontroll I status control status
— bit0 — — — bit0
H bit 1 —H — — bit1
Floating Floating L B N
H bit2 —{ Point |— — Point Adder/ f— — bit2
= Multiplier Subtractor =
: : — _: _: :__ = Output
H bit N-1 = u] bit N-1 Mux
Input - Uo:wb 7 U1:fpmul (T U2:fpadd U{D-1}:wb
Buses (M) I I 3 -
3 3
>)/
// —J
J m— A
QD

Registers (F)’W status

(39)

Feedback
Mux

control

Output
Buses

(R)

Success!

B Capturing the FPU shook out some bugs

B Were able to run original Verilog-based circuits through
flow, and obtain measurements of speed and area

B Able to compare:

FPGA with floating-point block vs. FPGA without

(40)

Speed of Soft FPU vs. Hard

16.8

B Original Research had ratio at 4 times
— Soft logic FPGA had carry chains, which made soft faster
— A key future work is to include special carry logic

(41)

Area of Soft FPU vs. Hard

B Original Research had ratio at 24 times
— Is in the same ball park — different base FPGA

(42)

Effort to Capture New Architecture v. Old

B Original Research required roughly 1 person-year of
work to modify VPR 4.3 to handle FPU

B This work required roughly 2 person-weeks, including
VPR debug time.

(43)

The Release: Last Week: VIR 1.0 Full

(44)

Location

B Original Location:
— http://www.eecqg.utoronto.ca/vtr

B Permanent, new Location, in Google Archive:
— http://code.google.com/p/vir-verilog-to-routing/

(45)

Google Archive Provides

B New Documentation and Tutorials for Whole Flow
B [ssue Tracking — anyone can report a bug

B Software Development Trunk now public

The Verilog-to-Routing (VTR) project is a large collaborative effort among multiple university research groups -
to provide a complete, open-source framework for conducting FPGA architecture and CAD experiments. Search projects

@ vtr-verilog-to-routing

Project Home | Downloads Wiki Issues Source

Summary Updates People

Project Information The Verilog-to-Routing (VTR) Project for FPGAs

Activity =1l High

Proiect feeds Current Version: 1.0 Full Rel - last updated February 15, 2012

Code license Introduction

Other Open Source

See source for details The Verilog-to-Routing (VTR) project is a world-wide collaborative effort among multiple research groups to provide a complete, open-

Label source framework for conducting FPGA architecture and CAD research and development. This software flow begins with a Verilog
abels

hardware description of digital circuits, and a file describing the target hypothetical architecture, and elaborates, synthesizes, packs,

Academic, FPGA, CAD places and routes the circuit, and performs timing analysis on the result.

AR Mombers . - Motivation
effrey....@gmail.com,
JasonKai... @gmail.com, The study of new FPGA architectures/algorithms can be a difficult process partly because of the effort required to conduct quality

tjaomniae::c?: @ 2::: gg:: experiments. A good FPGA architecture/algorithm experiment requires realistic benchmark circuits, optimized architectures, and CAD

kenneth mail.com tools that can efficiently map those benchmark circuits to those architectures. The VTR project enables such experiments by
4 committers) providing FPGA architects with a flexible and robust CAD flow for FPGAs.

1 contributor
Release

The VTR 1.0 release provides the following: benchmark circuits, sample FPGA architecture description files, a full CAD flow and
scripts to run that flow. This FPGA CAD flow takes as input, a user circuit (coded in Verilog) and a description of the FPGA
architecture. The CAD flow then maps the circuit to the FPGA architecture to produce, as output, a placed-and-routed FPGA. Here are
some highlights of the 1.0 full release:

« Timing-driven logic synthesis, packing, placement, and routing.
* Benchmark digital circuits consisting of real applications that contain both memories and multipliers. Seven of the 19 circuits
contain more than 10,000 6-LUTs. The largest of which is just under 100,000 6-LUTs.

License

(47)

NEW: VTR Fully Open Source

B ODIN Il was already Open Source
B ABC (from Berkeley) was also Open Source

B VPR is now, as of last week, fully Open Source
— No restrictions, MIT license

— For VTR download, still do ask for name of user, but is not
required to obtain software.

(48)

Future Work

(49)

Future VTR Work: Odin Il

B Generate Carry Chain elements from arithmetic
B Support Verilog Parameters
B [nfer Memory from 2D Arrays

B Continued improved language coverage
— And general bug fixing

B Extend Simulation Verification to downstream flow steps

(50)

Future VTR Work: ABC

B Move to more recent version of ABC
— Current version is old

B Find way to have it handle multiple clocks
— Rather than remove clocks!

B Use and Test efficacy of White Blocks

— Which permit optimization across fixed boundaries, both hard
and soft

(51)

Future VTR Work: VPR Algorithms

B Better Packing Algorithms
— Will attack pack time for common cases
— Resort to routing only when absolutely necessary
— Handle Carry Chains

B Placement
— Algorithms that scale in modern world of slow processors
— Handle Carry Chains

(52)

Future VTR Work: VPR Modeling

B Timing Analysis
— Support multiple clocks
— Hold time analysis
— Support arrival time specification

B Area Modeling
— Capture transistor-level design of complex blocks
— Automated transistor-level optimization (sizing) of blocks

B Energy/Power Modeling

(53)

Future VTR Work: VPR Architecture

B Support Carry Chains

— In architecture definition for intra-block and extra-block

B Bus-based routing for coarse-grained FPGAs

B Architecture of Clock spines/trees

(54)

VTR: A Long-Term Ongoing Project

B Trying to serve the community

B Weekly meeting via Google+ Video
— Almost every Thursday at 11am Eastern Time

B Let us know if you’d like to help!

(55)

