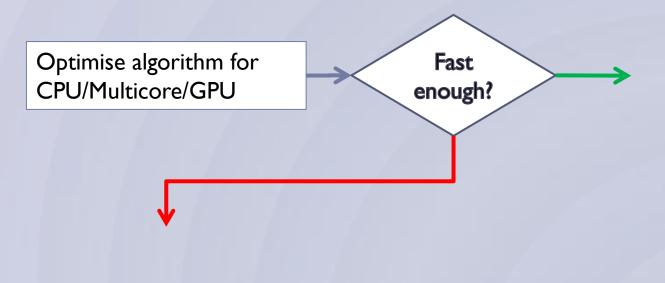
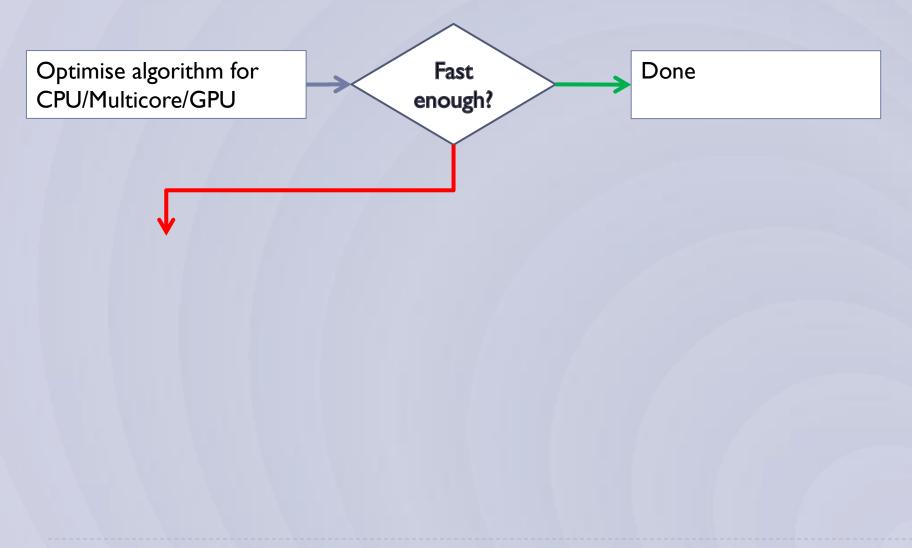
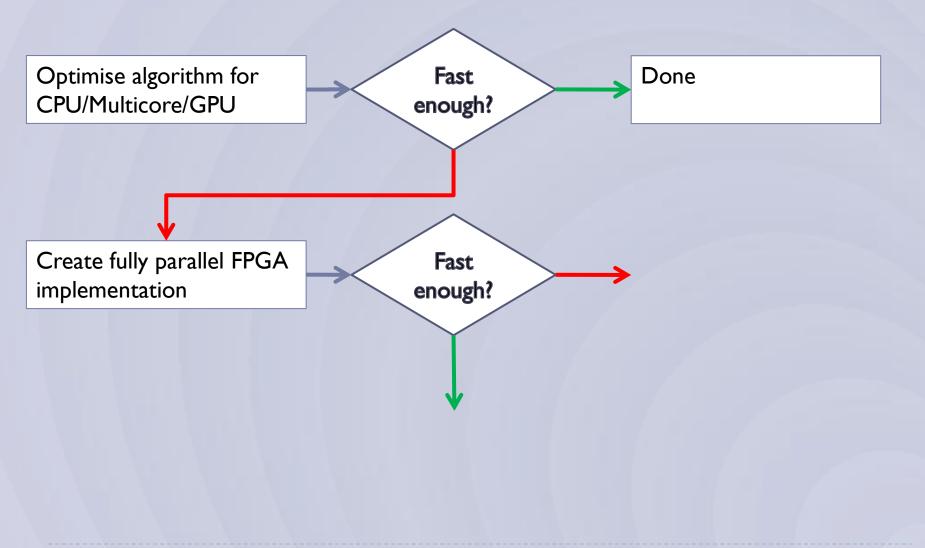
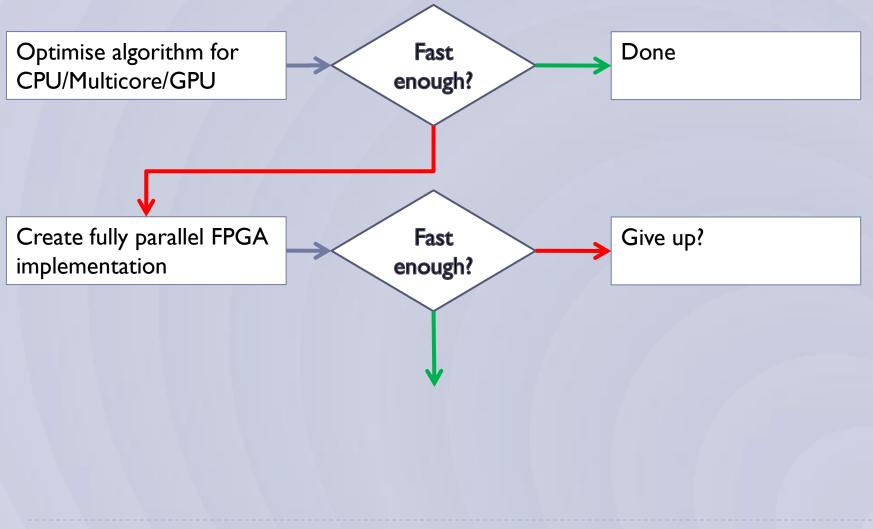
A Scalable Approach for Automated Precision Analysis

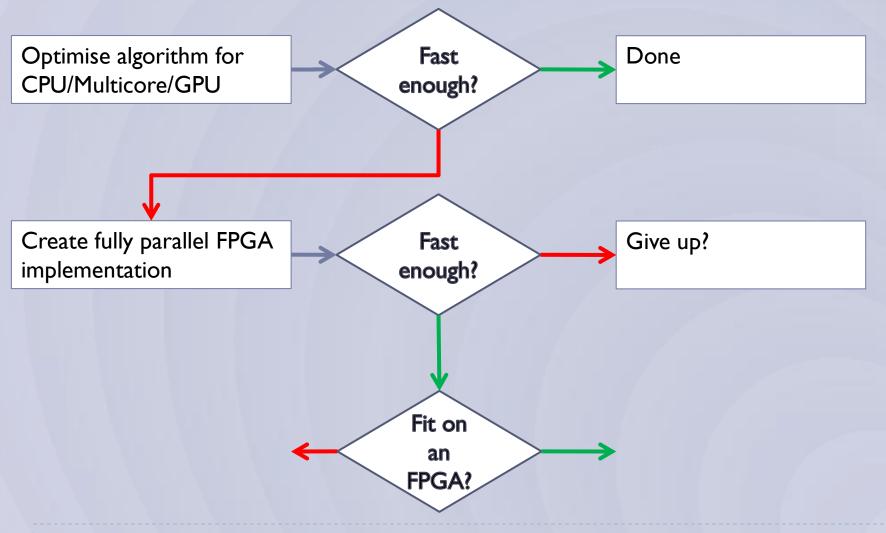
David Boland and George A. Constantinides

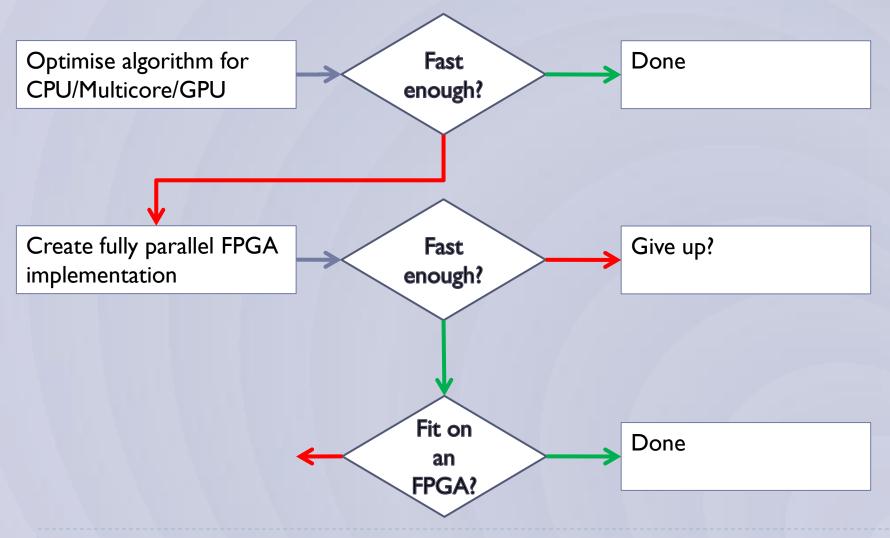


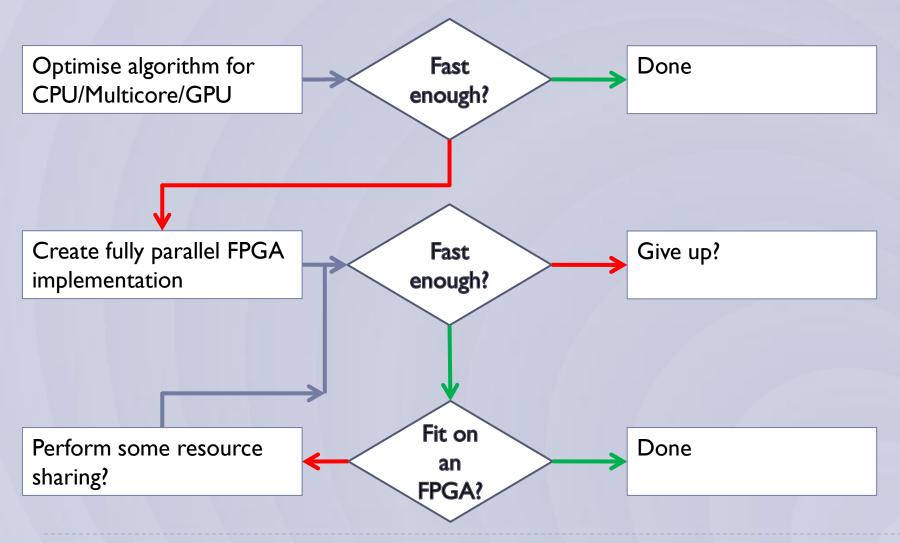


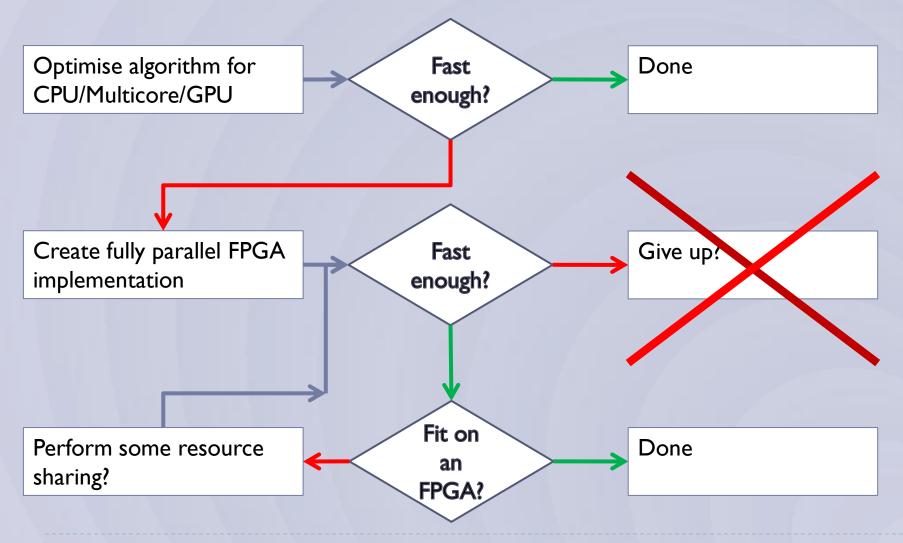












2

Word-length optimisation can be the game changer...

- Performance gain by moving from IEEE 754 double precision to single precision:
 - > 2x for a CPU
 - > 2-9x for a GPU
- FPGAs have much greater flexibility
 - Can implement any custom precision
 - Large performance trade-offs
 - Many factors affected
 - □ Silicon area
 - Clock speed
 - □ Latency
 - □ Memory use
 - Data transfer overhead

Reducing word-length can cause errors

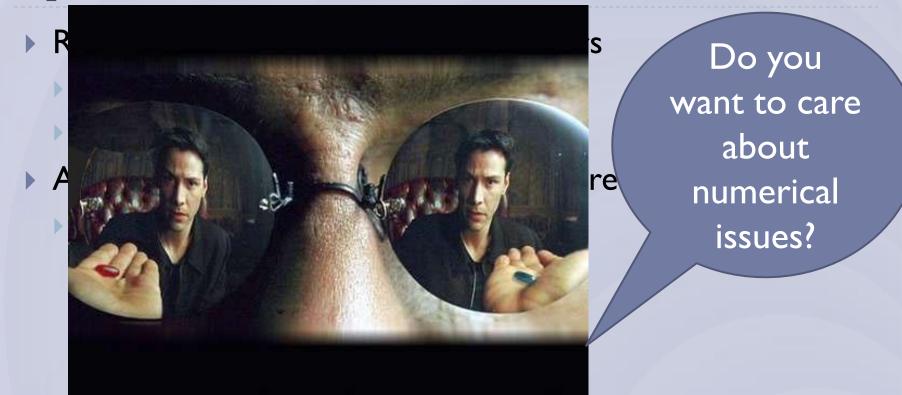
- Overflow error
- Accumulation of individual round-off errors

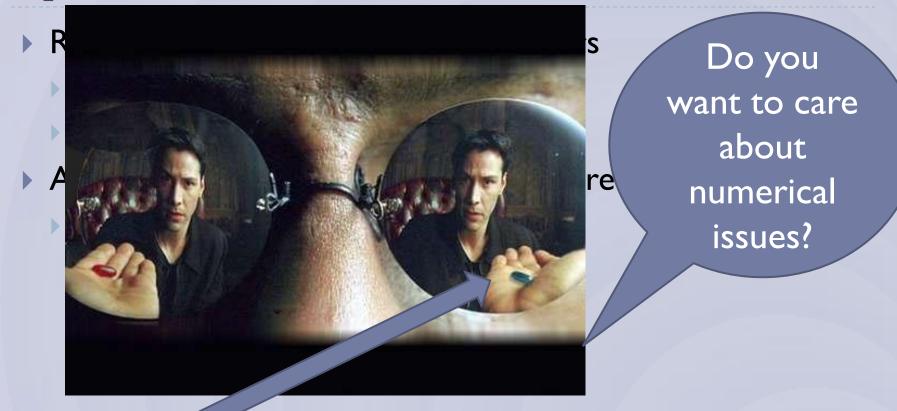
Reducing word-length can cause errors

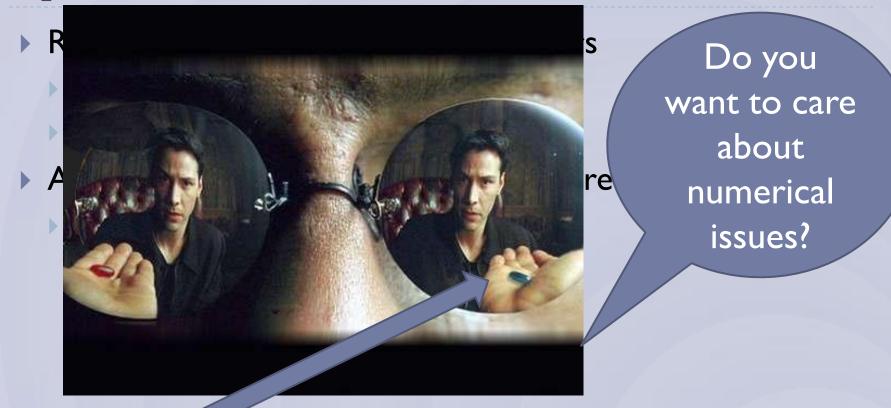
- Overflow error
- Accumulation of individual round-off errors
- Allows 'fair' comparison versus software

Reducing word-length can cause errors

- Overflow error
- Accumulation of individual round-off errors
- Allows 'fair' comparison versus software
 - Lazy (& incorrect?) comparison
 - (a+b)+c \neq a+(b+c)

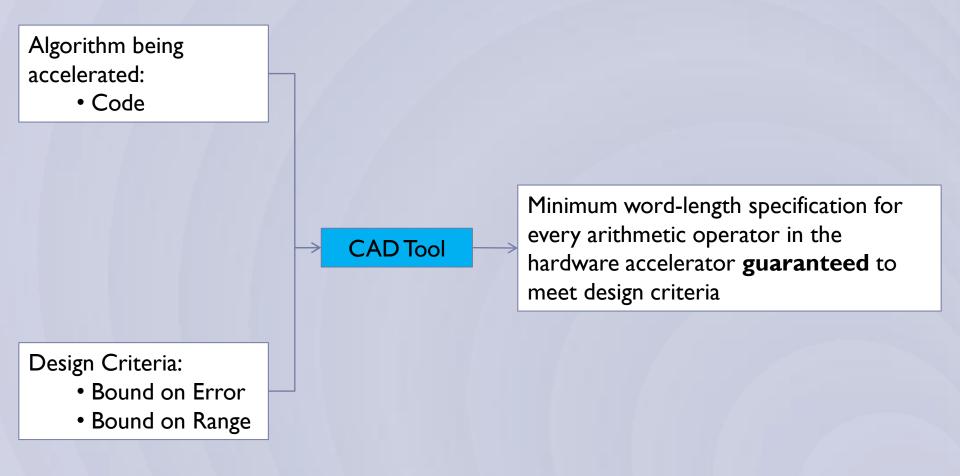


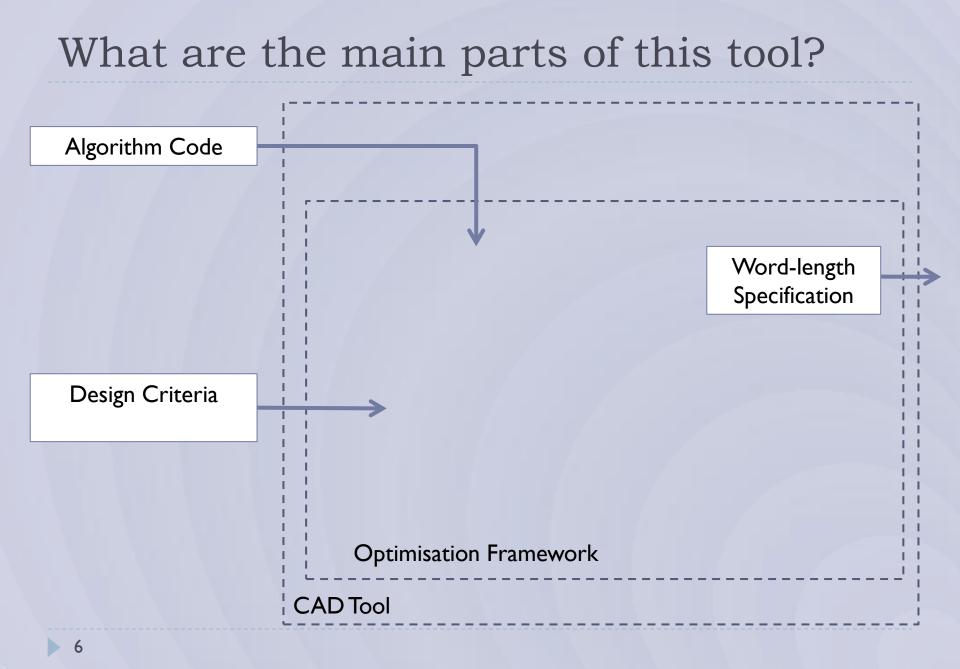


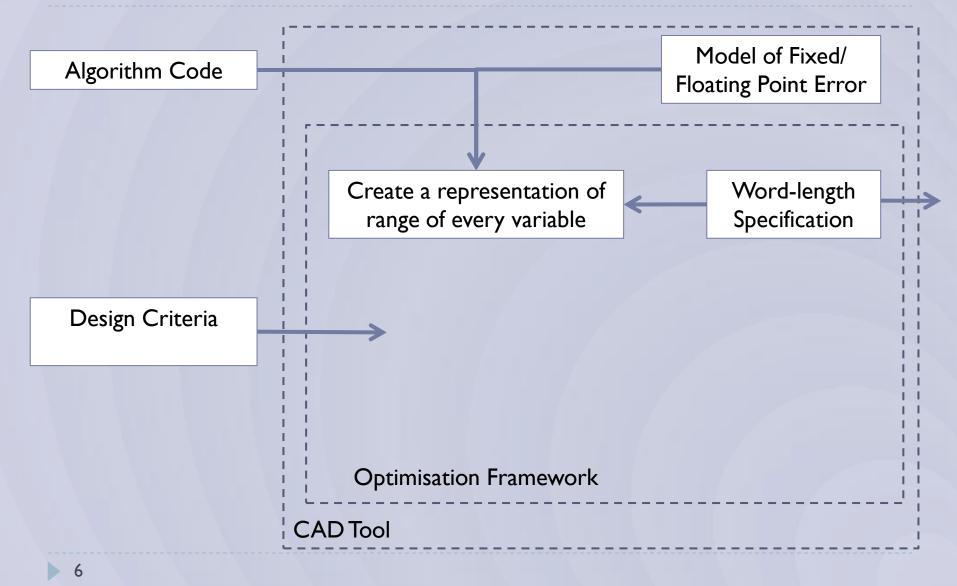


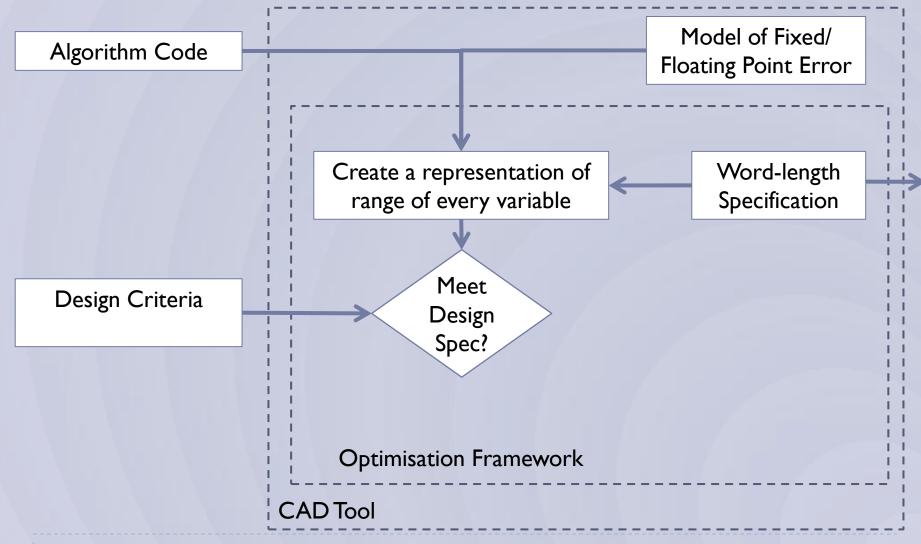
Report greater speed up factors by using IEEE single precision.

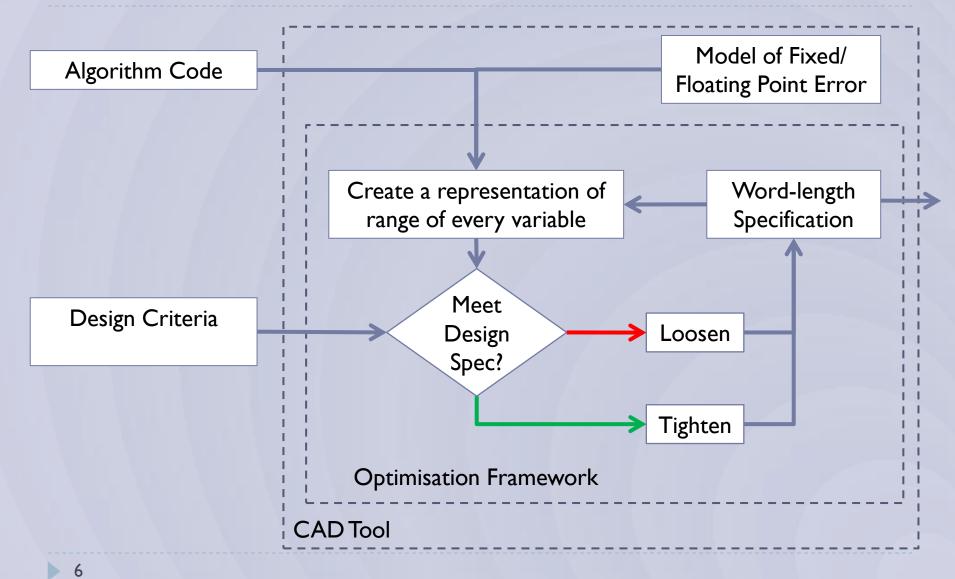
Ideal word-length optimisation

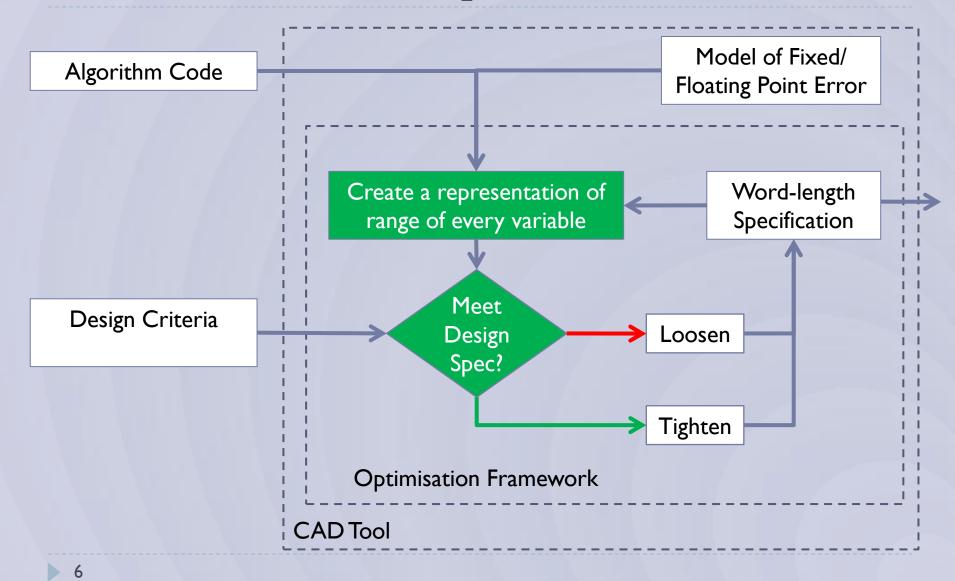












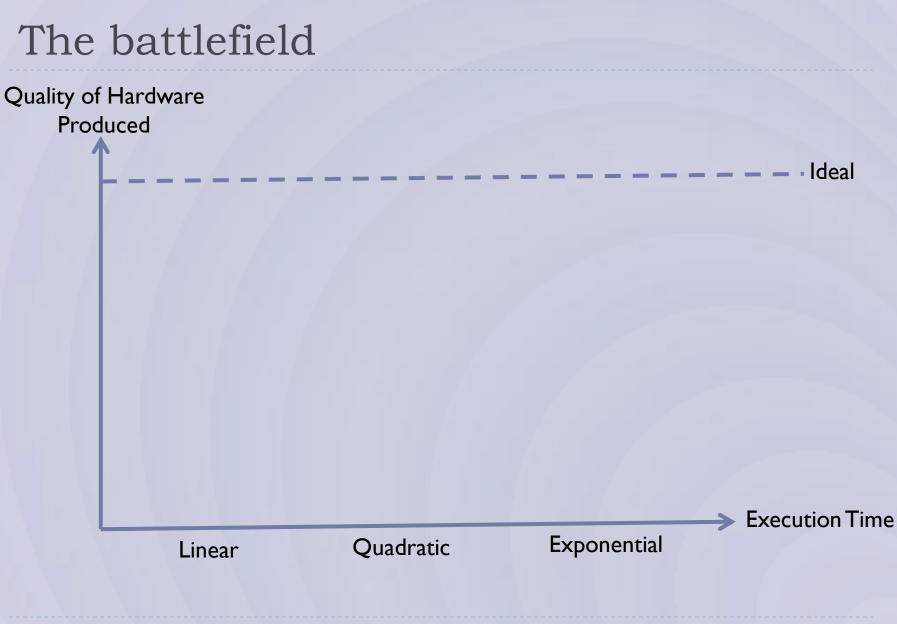
Quality of Hardware Produced

Linear

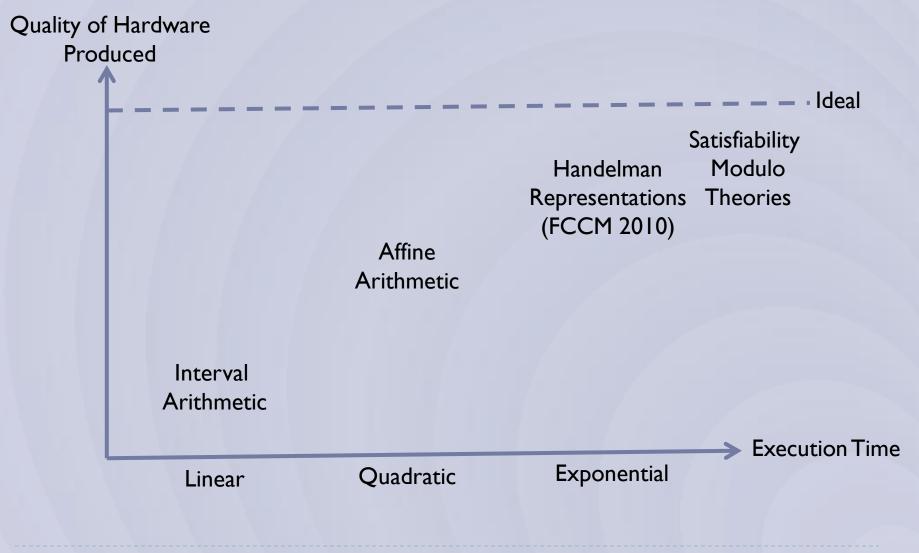
Quadratic

Exponential

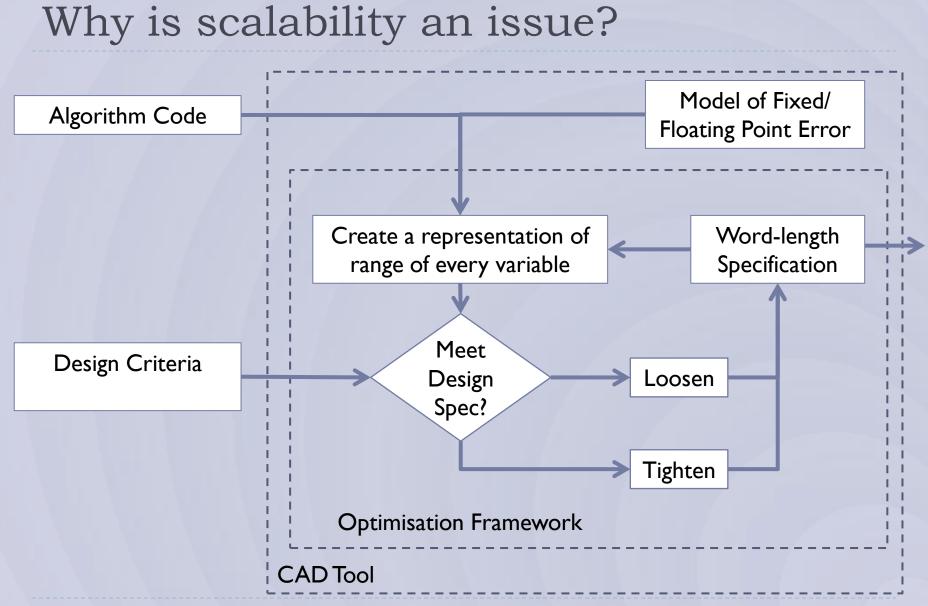
Execution Time

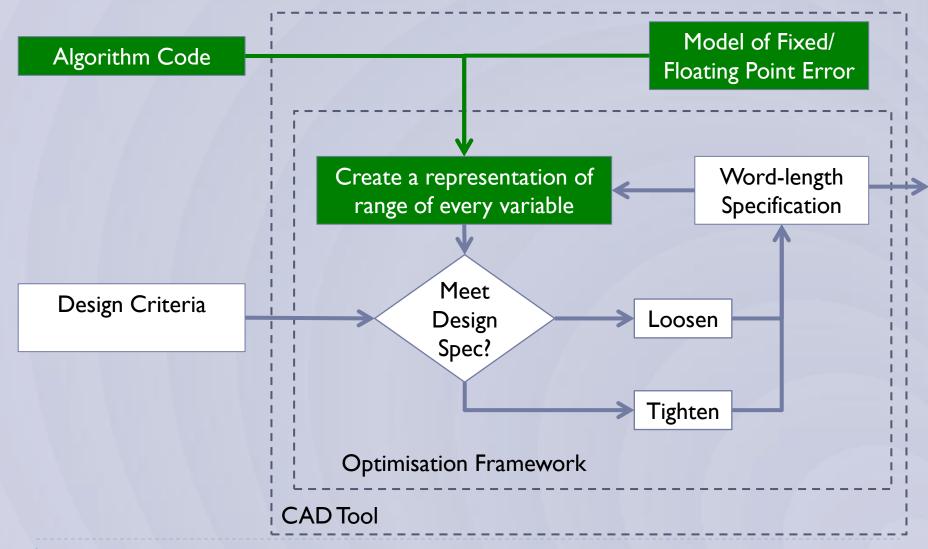


The battlefield



The battlefield Quality of Hardware Produced Ideal Satisfiability Modulo This work Handelman Theories Representations (FCCM 2010) Affine Arithmetic Interval Arithmetic Execution Time Exponential Quadratic Linear





Modelling Floating Point Error

The closest floating point approximation \hat{x} of x can be expressed as:

 $\hat{x} = x(1 + \delta_1)$ $|\delta_1| \le 2^{-m}$ (m = # of mantissa bits)

The floating point result of any scalar operation \bigcirc , where $\bigcirc \in \{+, -, \times, \div\}$ can be bounded as:

 $\widehat{x \odot y} = (x \odot y) (1 + \delta_1)$

Simple example:

- Code: a = x * y; b = a * z;
- Where: $x \in [0.8, 1.2], y \in [0.9, 1.1], z \in [9.9, 10.1]$

Simple example:

- Code: a = x * y; b = a * z;
- Where: $x \in [0.8, 1.2], y \in [0.9, 1.1], z \in [9.9, 10.1]$
- If we denote: $|x_1| \le 0.2$, $|y_1| \le 0.1$, $|z_1| \le 0.1$ $|\delta_i| \le 2^{-12}$
- Then: $x = (1 + x_1), y = (1 + y_1), z = (10 + z_1)$

Simple example:

- Code: a = x * y; b = a * z;
- Where: $x \in [0.8, 1.2], y \in [0.9, 1.1], z \in [9.9, 10.1]$
- If we denote: $|x_1| \le 0.2$, $|y_1| \le 0.1$, $|z_1| \le 0.1$ $|\delta_i| \le 2^{-12}$
- Then: $x = (1 + x_1), y = (1 + y_1), z = (10 + z_1)$

Create polynomials:

$$a = (1 + x_1)(1 + y_1)(1 + \delta_1)$$

$$a = 1 + x_1 + y_1 + x_1y_1 + \delta_1 + x_1\delta_1 + y_1\delta_1$$

$$+ x_1y_1\delta_1$$

Simple example:

- Code: a = x * y; b = a * z;
- Where: $x \in [0.8, 1.2], y \in [0.9, 1.1], z \in [9.9, 10.1]$
- If we denote: $|x_1| \le 0.2$, $|y_1| \le 0.1$, $|z_1| \le 0.1$ $|\delta_i| \le 2^{-12}$
- Then: $x = (1 + x_1), y = (1 + y_1), z = (10 + z_1)$

Create polynomials:

$$a = (1 + x_1)(1 + y_1)(1 + \delta_1)$$

$$a = 1 + x_1 + y_1 + x_1y_1 + \delta_1 + x_1\delta_1 + y_1\delta_1$$

$$+ x_1y_1\delta_1$$

$$b = (1 + x_1 + y_1 + x_1y_1 + \delta_1 + x_1\delta_1 + y_1\delta_1$$

$$+ x_1y_1\delta_1)(10 + z_1)(1 + \delta_2)$$

b

 $= 10 + 10x_{1} + 10y_{1} + 10x_{1}y_{1}$ $+ 10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1}$ $+ z_{1} + x_{1}z_{1} + y_{1}z_{1} + x_{1}y_{1}z_{1}$ $+ \delta_{1}z_{1} + x_{1}\delta_{1}z_{1} + y_{1}\delta_{1}z_{1} + x_{1}y_{1}\delta_{1}z_{1}$ $+ 10\delta_{2} + 10x_{1}\delta_{2} + 10y_{1}\delta_{2} + 10x_{1}y_{1}\delta_{2}$ $+ 10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2}$ $+ z_{1}\delta_{2} + x_{1}z_{1}\delta_{2} + y_{1}z_{1}\delta_{2} + x_{1}y_{1}z_{1}\delta_{2}$ $+ \delta_{1}z_{1}\delta_{2} + x_{1}\delta_{1}z_{1}\delta_{2} + y_{1}\delta_{1}z_{1}\delta_{2} + x_{1}y_{1}\delta_{1}z_{1}\delta_{2}$

b

$$= 10 + 10x_{1} + 10y_{1} + 10x_{1}y_{1} + 10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1} + z_{1} + x_{1}z_{1} + y_{1}z_{1} + x_{1}y_{1}z_{1} + \delta_{1}z_{1} + x_{1}\delta_{1}z_{1} + y_{1}\delta_{1}z_{1} + x_{1}y_{1}\delta_{1}z_{1} + 10\delta_{2} + 10x_{1}\delta_{2} + 10y_{1}\delta_{2} + 10x_{1}y_{1}\delta_{2} + 10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2} + z_{1}\delta_{2} + x_{1}z_{1}\delta_{2} + y_{1}z_{1}\delta_{2} + x_{1}y_{1}z_{1}\delta_{2} + \delta_{1}z_{1}\delta_{2} + x_{1}\delta_{1}z_{1}\delta_{2} + y_{1}\delta_{1}z_{1}\delta_{2} + x_{1}y_{1}\delta_{1}z_{1}\delta_{2}$$

What are the bounds on the range and relative error of b?

b

$$= 10 + 10x_{1} + 10y_{1} + 10x_{1}y_{1} + 10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1} + z_{1} + x_{1}z_{1} + y_{1}z_{1} + x_{1}y_{1}z_{1} + \delta_{1}z_{1} + x_{1}\delta_{1}z_{1} + y_{1}\delta_{1}z_{1} + x_{1}y_{1}\delta_{1}z_{1} + 10\delta_{2} + 10x_{1}\delta_{2} + 10y_{1}\delta_{2} + 10x_{1}y_{1}\delta_{2} + 10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2} + z_{1}\delta_{2} + x_{1}z_{1}\delta_{2} + y_{1}z_{1}\delta_{2} + x_{1}y_{1}z_{1}\delta_{2} + \delta_{1}z_{1}\delta_{2} + x_{1}\delta_{1}z_{1}\delta_{2} + y_{1}\delta_{1}z_{1}\delta_{2} + x_{1}y_{1}\delta_{1}z_{1}\delta_{2}$$

What are the bounds on the range and relative error of b? This is computing $x \times y \times z!!$

b

 $= 10 + 10x_{1} + 10y_{1} + 10x_{1}y_{1}$ $+ 10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1}$ $+ z_{1} + x_{1}z_{1} + y_{1}z_{1} + x_{1}y_{1}z_{1}$ $+ \delta_{1}z_{1} + x_{1}\delta_{1}z_{1} + y_{1}\delta_{1}z_{1} + x_{1}y_{1}\delta_{1}z_{1}$ $+ 10\delta_{2} + 10x_{1}\delta_{2} + 10y_{1}\delta_{2} + 10x_{1}y_{1}\delta_{2}$ $+ 10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2}$ $+ z_{1}\delta_{2} + x_{1}z_{1}\delta_{2} + y_{1}z_{1}\delta_{2} + x_{1}y_{1}z_{1}\delta_{2}$ $+ \delta_{1}z_{1}\delta_{2} + x_{1}\delta_{1}z_{1}\delta_{2} + y_{1}\delta_{1}z_{1}\delta_{2} + x_{1}y_{1}\delta_{1}z_{1}\delta_{2}$

 $b = 10 + 10x_1 + 10y_1 + 10x_1y_1 + 10x_1y_1 + 10\delta_1 + 10x_1\delta_1 + 10y_1\delta_1 + 10x_1y_1\delta_1 + z_1 + x_1z_1 + y_1z_1 + x_1y_1z_1 + \delta_1z_1 + x_1\delta_1z_1 + y_1\delta_1z_1 + x_1y_1\delta_1z_1 + 10\delta_2 + 10x_1\delta_2 + 10y_1\delta_2 + 10x_1y_1\delta_2 + 10\delta_1\delta_2 + 10x_1\delta_1\delta_2 + 10y_1\delta_1\delta_2 + 10x_1y_1\delta_1\delta_2 + z_1\delta_2 + x_1z_1\delta_2 + y_1z_1\delta_2 + x_1y_1z_1\delta_2$

 $+\delta_1 z_1 \delta_2 + x_1 \delta_1 z_1 \delta_2 + y_1 \delta_1 z_1 \delta_2 + x_1 y_1 \delta_1 z_1 \delta_2$

 $= 10 + 10x_{1} + 10y_{1} + 10x_{1}y_{1}$ $+ 10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1}$ $+ z_{1} + x_{1}z_{1} + y_{1}z_{1} + x_{1}y_{1}z_{1}$ $+ \delta_{1}z_{1} + x_{1}\delta_{1}z_{1} + y_{1}\delta_{1}z_{1} + x_{1}y_{1}\delta_{1}z_{1}$ $+ 10\delta_{2} + 10x_{1}\delta_{2} + 10y_{1}\delta_{2} + 10x_{1}y_{1}\delta_{2}$ $+ 10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2}$ $+ z_{1}\delta_{2} + x_{1}z_{1}\delta_{2} + y_{1}z_{1}\delta_{2} + x_{1}y_{1}z_{1}\delta_{2}$ $+ \delta_{1}z_{1}\delta_{2} + x_{1}\delta_{1}z_{1}\delta_{2} + y_{1}\delta_{1}z_{1}\delta_{2} + x_{1}y_{1}\delta_{1}z_{1}\delta_{2}$

Can contribute $\pm 1.1920929 \times 10^{-10}$ to final range of b

h

Can contribute ±2 to final range of b h $= 10 + 10x_1 + 10y_1 + 10x_1y_1$ $+10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1}$ $+ z_1 + x_1 z_1 + y_1 z_1 + x_1 y_1 z_1$ $+\delta_1 z_1 + x_1 \delta_1 z_1 + y_1 \delta_1 z_1 + x_1 y_1 \delta_1 z_1$ $+10\delta_{2}+10x_{1}\delta_{2}+10y_{1}\delta_{2}+10x_{1}y_{1}\delta_{2}$ $+10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2}$ $+ z_1 \delta_2 + x_1 z_1 \delta_2 + y_1 z_1 \delta_2 + x_1 y_1 z_1 \delta_2$ $+\delta_1 z_1 \delta_2 + x_1 \delta_1 z_1 \delta_2 + y_1 \delta_1 z_1 \delta_2 + x_1 y_1 \delta_1 z_1 \delta_2$

Can contribute $\pm 1.1920929 \times 10^{-10}$ to final range of b

b

$$= 10 + 10x_{1} + 10y_{1} + 10x_{1}y_{1} + 10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1} + z_{1} + x_{1}z_{1} + y_{1}z_{1} + x_{1}y_{1}z_{1} + \delta_{1}z_{1} + x_{1}\delta_{1}z_{1} + y_{1}\delta_{1}z_{1} + x_{1}y_{1}\delta_{1}z_{1} + 10\delta_{2} + 10x_{1}\delta_{2} + 10y_{1}\delta_{2} + 10x_{1}y_{1}\delta_{2} + 10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2} + z_{1}\delta_{2} + x_{1}z_{1}\delta_{2} + y_{1}z_{1}\delta_{2} + x_{1}y_{1}z_{1}\delta_{2} + \delta_{1}z_{1}\delta_{2} + x_{1}\delta_{1}z_{1}\delta_{2} + y_{1}\delta_{1}z_{1}\delta_{2} + x_{1}y_{1}\delta_{1}z_{1}\delta_{2}$$

 $b = 10 + 10x_1 + 10y_1 + 10x_1y_1 + 10\delta_1 + z_1$ $+ x_1z_1 + y_1z_1 + x_1y_1z_1 + 10\delta_2$

h $= 10 + 10x_1 + 10y_1 + 10x_1y_1$ $+10\delta_1 + 10x_1\delta_1 + 10y_1\delta_1 + 10x_1y_1\delta_1$ $+ z_1 + x_1 z_1 + y_1 z_1 + x_1 y_1 z_1$ $+\delta_1 z_1 + x_1 \delta_1 z_1 + y_1 \delta_1 z_1 + x_1 y_1 \delta_1 z_1$ $+ 10\delta_2 + 10x_1\delta_2 + 10y_1\delta_2 + 10x_1y_1\delta_2$ $10\delta_{1}\delta_{2} + 10\kappa_{1}\delta_{1}\delta_{2} + 10\gamma_{1}\delta_{1}\delta_{2} + 10\kappa_{1}\gamma_{1}\delta_{1}\delta_{2}$ $+ z_1 \delta_2 + x_1 z_1 \delta_2 + y_1 z_1 \delta_2 + x_1 y_1 z_1 \delta_2$

 $b = 10 + 10x_1 + 10y_1 + 10x_1y_1 + 10\delta_1 + z_1$ $+ x_1z_1 + y_1z_1 + x_1y_1z_1 + 10\delta_2 + \zeta_1 \qquad |\zeta_1| \le 0.0015$

An added bonus

- Can use methods from approximation theory to make our technique applicable to algorithms including any elementary functions (e.g. Sine/Cosine/Sqrt)
 - These methods approximate an elementary function using a polynomial and an extra term bounding the error of the approximation

b

$$= 10 + 10x_{1} + 10y_{1} + 10x_{1}y_{1} + 10\delta_{1} + 10x_{1}\delta_{1} + 10y_{1}\delta_{1} + 10x_{1}y_{1}\delta_{1} + z_{1} + x_{1}z_{1} + y_{1}z_{1} + x_{1}y_{1}z_{1} + \delta_{1}z_{1} + x_{1}\delta_{1}z_{1} + y_{1}\delta_{1}z_{1} + x_{1}y_{1}\delta_{1}z_{1} + 10\delta_{2} + 10x_{1}\delta_{2} + 10y_{1}\delta_{2} + 10x_{1}y_{1}\delta_{2} + 10\delta_{1}\delta_{2} + 10x_{1}\delta_{1}\delta_{2} + 10y_{1}\delta_{1}\delta_{2} + 10x_{1}y_{1}\delta_{1}\delta_{2} + z_{1}\delta_{2} + x_{1}z_{1}\delta_{2} + y_{1}z_{1}\delta_{2} + x_{1}y_{1}z_{1}\delta_{2} + \delta_{1}z_{1}\delta_{2} + x_{1}\delta_{1}z_{1}\delta_{2} + y_{1}\delta_{1}z_{1}\delta_{2} + x_{1}y_{1}\delta_{1}z_{1}\delta_{2}$$

 $b = 10 + 10x_1 + 10y_1 + 10x_1y_1 + 10\delta_1 + z_1$ $+ x_1z_1 + y_1z_1 + x_1y_1z_1 + 10\delta_2 + \zeta_1 \qquad |\zeta_1| \le 0.0015$

An added bonus

- Can use methods from approximation theory to make our technique applicable to algorithms including any elementary functions (e.g. Sine/Cosine/Sqrt)
 - Methods from approximation theory approximate an elementary function using a polynomial and an extra term bounding the error of the approximation

We get this for free!!

Tests

5x5 Successive over relaxation

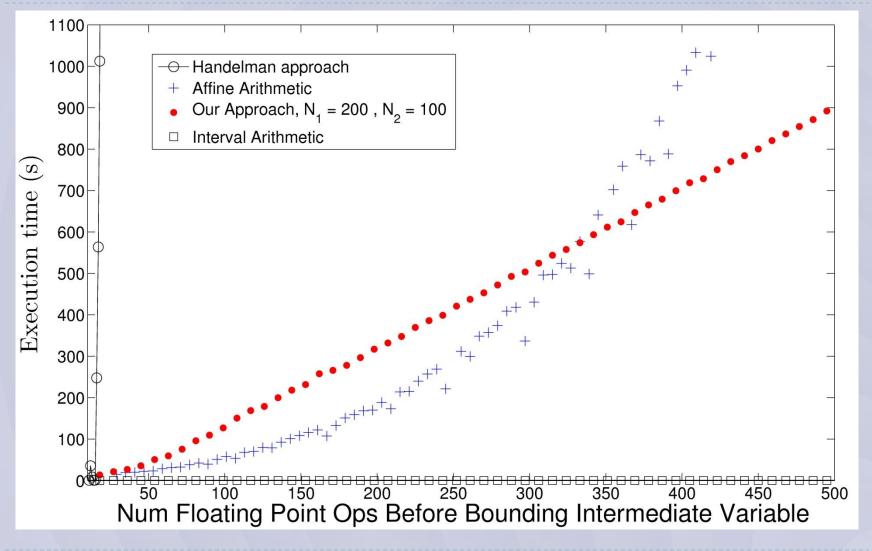
Real algorithm to find the solution to a system of linear equations of form Ax = b

for
$$k = 1; k \le 8; k + 4\mathbf{0}$$

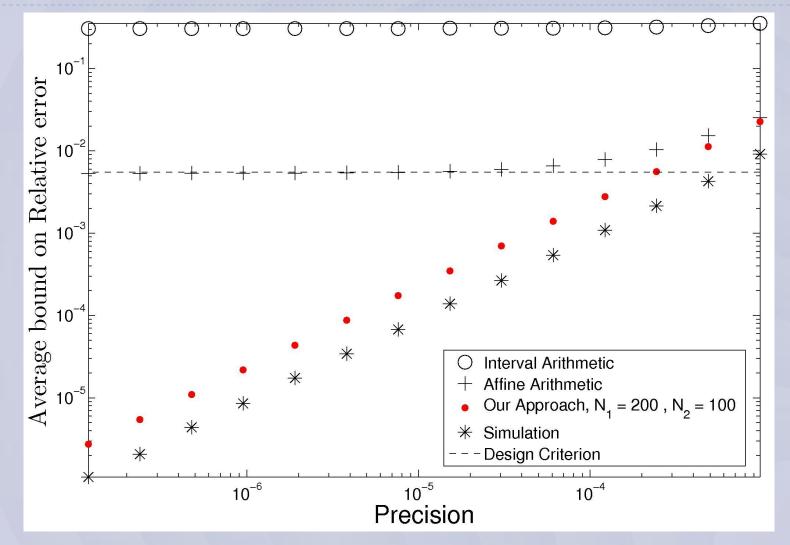
for $j = 1; j \le 5; j + 4\mathbf{0}$
 $x^{j} = (1 - w)x^{j} + \frac{w}{A(j)^{j}}(b_{j} - \sum_{i=1, i \neq j}^{5} A(j)^{i}x^{i})$
and for

end for

Scalability: Execution time vs #operations



Quality of bounds: Relative error vs precision



Hardware use

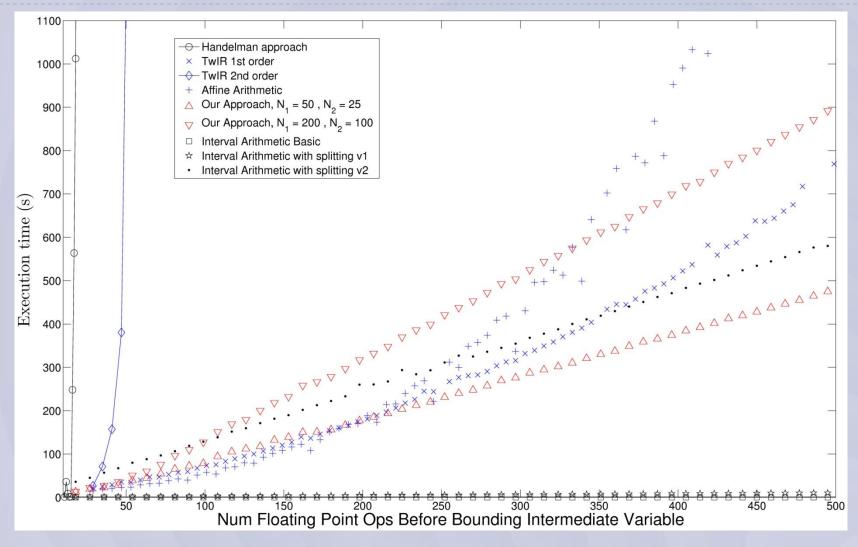
Method	Exponent	Mantissa	Slice	Slice	Frequency
	(# bits)	(# bits)	Regs	LUTs	(MHz)
Simulation	8	11	3562	3012	330
Our Approach	8	13	4261	3647	330
Affine Arithmetic	8	18	6606	5368	300
IA	∞	∞	∞	∞	N/A
IEEE Single Precision	8	24 – –	8407	6815	280
IEEE Double Precision	11	53	27200	22066	251

Summary

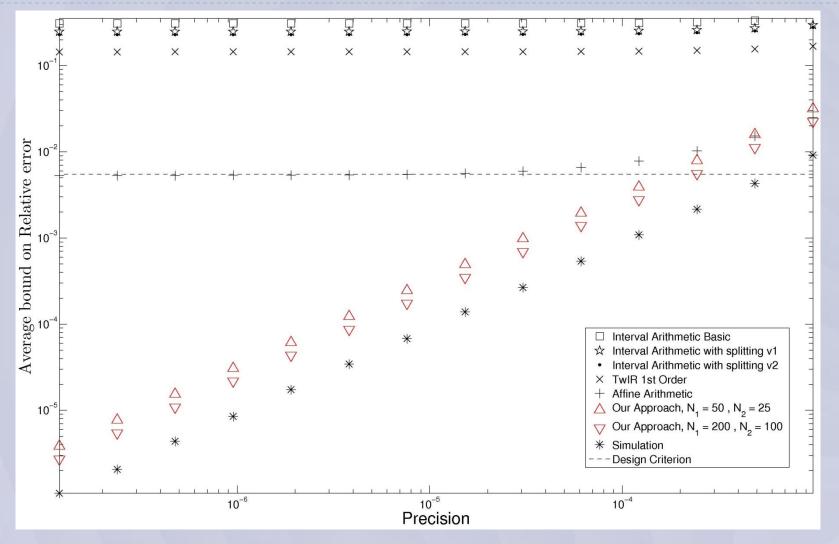
- Word-length optimisation can significantly improve hardware
- Need scalable analysis techniques to apply word-length optimisation on larger, more complex algorithms
- Our paper describes a simple set of algorithms to obtain tight bounds within a scalable execution time
 - Can use >80% fewer slice registers than IEEE double precision arithmetic
 - Can use >30% fewer slice registers than competing methods.
 - Can create hardware that is guaranteed to meet design criteria that is not possible using alternative methods

Thank you for listening

Scalability: Execution time vs #operations



Quality of bounds: Relative error vs precision



Quality of bounds vs execution time

