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Word-length optimisation can be the game 

changer… 

 Performance gain by moving from IEEE 754 double 
precision to single precision: 

 2x  for a CPU 

 2-9x  for a GPU 

 FPGAs have much greater flexibility  

 Can implement any custom precision  

 Large performance trade-offs  

 Many factors affected 

 Silicon area 

 Clock speed 

 Latency 

 Memory use 

 Data transfer overhead 
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Ideal word-length optimisation 

Algorithm being 

accelerated: 

• Code 

CAD Tool 

Minimum word-length specification for 

every arithmetic operator in the 

hardware accelerator guaranteed to 

meet design criteria 

Design Criteria: 

• Bound on Error 

• Bound on Range 
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Why is scalability an issue?  

 Modelling Floating Point Error 

 The closest floating point approximation    of    can be 

expressed as: 

 

 

 

 The floating point result of any scalar operation     , where  

         can be bounded as: 
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An added bonus 

 Can use methods from approximation theory to make our 

technique applicable to algorithms including any 

elementary functions (e.g. Sine/Cosine/Sqrt) 

 These methods approximate an elementary function using a 

polynomial and an extra term bounding the error of the 

approximation 
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Tests 

 5x5 Successive over relaxation 

 Real algorithm to find the solution to a system of linear 

equations of form  
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Scalability: Execution time vs #operations 
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Quality of bounds: Relative error vs 

precision 
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Hardware use 
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Summary 

 Word-length optimisation can significantly improve 

hardware 

 Need scalable analysis techniques to apply word-length 

optimisation on larger, more complex algorithms 

 Our paper describes a simple set of algorithms to obtain 

tight bounds within a scalable execution time 

 Can use >80% fewer slice registers than IEEE double precision 

arithmetic 

 Can use >30% fewer slice registers than competing methods. 

 Can create hardware that is guaranteed to meet design criteria 

that is not possible using alternative methods 
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Thank you for listening 
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