
A Scalable Approach for

Automated Precision Analysis

David Boland

and George A. Constantinides

1

Accelerating an application

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

Done

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

Create fully parallel FPGA

implementation

Done

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

Create fully parallel FPGA

implementation

Done

Give up?

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

Create fully parallel FPGA

implementation

Done

Give up?

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

Create fully parallel FPGA

implementation

Done

Done

Give up?

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

Create fully parallel FPGA

implementation

Done

Done

Give up?

Perform some resource

sharing?

2

Accelerating an application

Optimise algorithm for

CPU/Multicore/GPU

Create fully parallel FPGA

implementation

Done

Done

Give up?

Perform some resource

sharing?

2

Word-length optimisation can be the game

changer…

 Performance gain by moving from IEEE 754 double
precision to single precision:

 2x for a CPU

 2-9x for a GPU

 FPGAs have much greater flexibility

 Can implement any custom precision

 Large performance trade-offs

 Many factors affected

 Silicon area

 Clock speed

 Latency

 Memory use

 Data transfer overhead

3

So why don’t we perform word-length

optimisation?

 Reducing word-length can cause errors

 Overflow error

 Accumulation of individual round-off errors













4

So why don’t we perform word-length

optimisation?

 Reducing word-length can cause errors

 Overflow error

 Accumulation of individual round-off errors

 Allows ‘fair’ comparison versus software









4

So why don’t we perform word-length

optimisation?

 Reducing word-length can cause errors

 Overflow error

 Accumulation of individual round-off errors

 Allows ‘fair’ comparison versus software

 Lazy (& incorrect?) comparison

 (a+b)+c ≠ a+(b+c)







4

So why don’t we perform word-length

optimisation?

 Reducing word-length can cause errors

 Overflow error

 Accumulation of round-off error

 Allows ‘fair’ comparison versus software

 Lazy (& incorrect?) comparison

 (a+b)+c ≠ a+(b+c)







4

Do you

want to care

about

numerical

issues?

So why don’t we perform word-length

optimisation?

 Reducing word-length can cause errors

 Overflow error

 Accumulation of round-off error

 Allows ‘fair’ comparison versus software

 Lazy (& incorrect?) comparison

 (a+b)+c ≠ a+(b+c)







4

Do you

want to care

about

numerical

issues?

So why don’t we perform word-length

optimisation?

 Reducing word-length can cause errors

 Overflow error

 Accumulation of round-off error

 Allows ‘fair’ comparison versus software

 Lazy (& incorrect?) comparison

 (a+b)+c ≠ a+(b+c)





Report greater speed up factors by using IEEE single precision.

4

Do you

want to care

about

numerical

issues?

Ideal word-length optimisation

Algorithm being

accelerated:

• Code

CAD Tool

Minimum word-length specification for

every arithmetic operator in the

hardware accelerator guaranteed to

meet design criteria

Design Criteria:

• Bound on Error

• Bound on Range

5

What are the main parts of this tool?

Algorithm Code

Design Criteria

Word-length

Specification

Optimisation Framework

CAD Tool

6

What are the main parts of this tool?

Algorithm Code

Design Criteria

Model of Fixed/

Floating Point Error

Word-length

Specification

Optimisation Framework

CAD Tool

Create a representation of

range of every variable

6

What are the main parts of this tool?

Algorithm Code

Design Criteria

Model of Fixed/

Floating Point Error

Word-length

Specification

Optimisation Framework

CAD Tool

Meet

Design

Spec?

Create a representation of

range of every variable

6

What are the main parts of this tool?

Algorithm Code

Design Criteria

Model of Fixed/

Floating Point Error

Word-length

Specification

Optimisation Framework

CAD Tool

Meet

Design

Spec?

Tighten

Loosen

Create a representation of

range of every variable

6

What are the main parts of this tool?

Algorithm Code

Design Criteria

Model of Fixed/

Floating Point Error

Word-length

Specification

Optimisation Framework

CAD Tool

Meet

Design

Spec?

Tighten

Loosen

Create a representation of

range of every variable

6

The battlefield

Linear Quadratic Exponential
Execution Time

Quality of Hardware

Produced

7

The battlefield

Linear Quadratic Exponential
Execution Time

Quality of Hardware

Produced

Ideal

7

The battlefield

Linear Quadratic Exponential
Execution Time

Quality of Hardware

Produced

Interval

Arithmetic

Affine

Arithmetic

Handelman

Representations

(FCCM 2010)

Satisfiability

Modulo

Theories

Ideal

7

The battlefield

Linear Quadratic Exponential
Execution Time

Quality of Hardware

Produced

Interval

Arithmetic

Affine

Arithmetic

Handelman

Representations

(FCCM 2010)

Satisfiability

Modulo

Theories

Ideal

7

This work

Why is scalability an issue?

Algorithm Code

Design Criteria

Model of Fixed/

Floating Point Error

Word-length

Specification

Optimisation Framework

CAD Tool

Meet

Design

Spec?

Tighten

Loosen

Create a representation of

range of every variable

8

Why is scalability an issue?

Algorithm Code

Design Criteria

Model of Fixed/

Floating Point Error

Word-length

Specification

Optimisation Framework

CAD Tool

Meet

Design

Spec?

Tighten

Loosen

Create a representation of

range of every variable

8

Why is scalability an issue?

 Modelling Floating Point Error

 The closest floating point approximation of can be

expressed as:

 The floating point result of any scalar operation , where

 can be bounded as:

9

(m = # of mantissa bits)

Why is scalability an issue?

 Simple example:

 Code:

 Where:







10

Why is scalability an issue?

 Simple example:

 Code:

 Where:

 If we denote:

 Then:



10

Why is scalability an issue?

 Simple example:

 Code:

 Where:

 If we denote:

 Then:

 Create polynomials:

10

Why is scalability an issue?

 Simple example:

 Code:

 Where:

 If we denote:

 Then:

 Create polynomials:

10

Why is scalability an issue?

11

Why is scalability an issue?

What are the bounds on the range and relative error of b?

11

Why is scalability an issue?

This is computing x × y × z!!

What are the bounds on the range and relative error of b?

11

Why is scalability an issue?

12

Why is scalability an issue?

12

Why is scalability an issue?

12

Can contribute ±1.1920929 × 10-10 to final range of b

Why is scalability an issue?

12

Can contribute ±1.1920929 × 10-10 to final range of b

Can contribute ±2 to final range of b

Why is scalability an issue?

12

Why is scalability an issue?

12

An added bonus

 Can use methods from approximation theory to make our

technique applicable to algorithms including any

elementary functions (e.g. Sine/Cosine/Sqrt)

 These methods approximate an elementary function using a

polynomial and an extra term bounding the error of the

approximation

13

Why is scalability an issue?

12

An added bonus

 Can use methods from approximation theory to make our

technique applicable to algorithms including any

elementary functions (e.g. Sine/Cosine/Sqrt)

 Methods from approximation theory approximate an

elementary function using a polynomial and an extra term

bounding the error of the approximation

 We get this for free!!

13

Tests

 5x5 Successive over relaxation

 Real algorithm to find the solution to a system of linear

equations of form

14

Scalability: Execution time vs #operations

15

Quality of bounds: Relative error vs

precision

16

Hardware use

17

Summary

 Word-length optimisation can significantly improve

hardware

 Need scalable analysis techniques to apply word-length

optimisation on larger, more complex algorithms

 Our paper describes a simple set of algorithms to obtain

tight bounds within a scalable execution time

 Can use >80% fewer slice registers than IEEE double precision

arithmetic

 Can use >30% fewer slice registers than competing methods.

 Can create hardware that is guaranteed to meet design criteria

that is not possible using alternative methods

18

Thank you for listening

Scalability: Execution time vs #operations

53

Quality of bounds: Relative error vs

precision

54

Quality of bounds vs execution time

55

