Optimizing SDRAM Bandwidth for Custom
FPGA Loop Accelerators

Samuel Bayliss and George A. Constantinides

February 24, 2012

Imperial College
London

Introduction

» Many algorithms suitable for FPGA acceleration require
off-chip memory access

> Desirable to consider the cost of off-chip communication
up-front in the design process
> Using the Polyhedral Model, we can:

» Analyse communication cost at compile time
» Synthesize an efficient SDRAM memory controller
» Exploit Data Reuse and Transaction Reordering

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Introduction

» Many algorithms suitable for FPGA acceleration require
off-chip memory access

> Desirable to consider the cost of off-chip communication
up-front in the design process
> Using the Polyhedral Model, we can:

» Analyse communication cost at compile time
» Synthesize an efficient SDRAM memory controller
» Exploit Data Reuse and Transaction Reordering

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Proposed Computation Platform
(VR

Parallel On Chip Efficient Data
Datapath Buffering Transfer
Execution Dual Port Block
Pipeline T RAM row
Execution Dual Port Block Address SDRAM
Pipeline |7 RAM Sequencer Interface <1\:;>
burst
Execution Dual Port Block
Pipeline [T RAM >

S. Bayliss and G. A. Constantinides
Optimizing SDRAM Bandwidth

Imperial College
London

Proposed Computation Platform
annnnnonnononononnnnoooonooononnonnnnrnn

Parallel On Chip Efficient Data
Datapath Buffering Transfer

Execution Dual Port Block
Pipeline RAM row

Execution Dual Port Block Address SDRAM
Pipeline RAM Sequencer Interface

burst

Execution Dual Port Block
Pipeline RAM

o

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Proposed Computation Platform
annnnnonnononononnnnoooonooononnonnnnrnn

Parallel On Chip Efficient Data
Datapath Buffering Transfer
Execution Dual Port Block
Pipeline |+~ RAM ™ row
Execution Dual Port Block Address SDRAM
Pipeline RAM "l Sequencer Interface <1\:;>
burst
Execution Dual Port Block
Pipeline > RAM il

S. Bayliss and G. A. Constantinides
Optimizing SDRAM Bandwidth

Imperial College
London

SDRAM Memory Characteristics

» Advantage : SDRAM is cheap, high capacity, commodity
memory

» Disadvantage : Internal device architecture means high
latency (20-30 clock cycles in FPGA)
» Physical device structure imposes timing constraints

» Explicit ‘activation’ of a row before data is read from it
» Explicit ‘precharge’ of a row before another row is ‘activated’

» Significant bandwidth difference improvements possible when
reordering external memory transactions

» Typically > 5x bandwidth difference between optimal and
worst-case performance

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

» With predictable patterns of memory access
» Can Prefetch data
» SDRAM latency needn't impact bandwidth
» Can Reuse data in on-chip memory
> Reduce number of external memory transactions
» Can Reorder external memory transactions

> Reduce the number of SDRAM row-swaps: increase
bandwidth

Requirement

» Need a mathematical framework to analyze memory patterns

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Nested Loops in the Polyhedral Model

int A[56]; int y;
for (x1 0 ; x1 < 2 ; x1+4+)
for (x2 1 ; x2 < 2 ; x2++)
for (x3 = x1 ; x3 < x2 ; x3++)
y = func (A[7*xIN¢ 8%x2 + 9*x3]) ;

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Nested Loops in the Polyhedral Model

int A[56]; int y;
for (x1 =0 ; x1 < 2 ; x1++)
for (x2 = 2 - x1 ; x2 < 2 ; x2++)
for 3 =x1 ; x3 < x2 ; x3++)
y = Nunc(A[7*x1 + 8*x2 + 9%x3]) ;

S. Bayliss and G. A. Constantinides
Optimizing SDRAM Bandwidth

Imperial College
London

Nested Loops in the Polyhedral Model

int A[56]; int y;
for (x1 =0 ; x1 < 2 ; x1++)
for (x2 = 2 - x1 ; x2 < 2 ; x2++)
for (x3 = x1 ; x3 < x2 ; x3++)
y = func (A[7*x1 + 8*x2 + 9%x3]) ;

x1
x2
x3

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Nested Loops in the Polyhedral Model

int A[56]; int y;
for (x1 =0 ; x1 < 2 ; x1++)
for (x2 = 2 - x1 ; x2 < 2 ; x2++)
for (x3 = x1 ; x3 < x2 ; x3++)
y = func(A[7*x1 + 8%x2 + 9*x3])

b

1 0 0 0
10 0|/ 2
1 -1 0 —2
o 1 of*2]=] 2
1 0 —1| \x 0
0 -1 1 0

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Nested Loops in the Polyhedral Model
param t=1
int A[56]; int y; int buf [5][];
for (x1 =0 ; x1 < 2 ; x1++)
for (x2 = 2 - x1 ; x2 < 2 ; x2++)
for (x3 = x1 ; x3 < x2 ; x3++)
y = func(buf[...][...])

—— fill (&buf);

1 0 0 0

) 2

1 -1 _2
0 x2 <

0 1 0 2

1 0 —1| \x 0

0 -1 1 0

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Nested Loops in the Polyhedral Model
param t=2
int A[56]; int y; int buf [3][];
for (x1 =0 ; x1 < 2 ; x1++) £i11 (&buf) ;
for (x2 = 2 - x1 ; x2 < 2 ; x2++)
for (x3 = x1 ; x3 < x2 ; x3++)
y = func(buf[...][...])

1 0 0 0

) 2

1 -1 _2
0 x2 <

0 1 0 2

1 0 —1| \x 0

0 -1 1 0

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Nested Loops in the Polyhedral Model

param t=3
int A[56]; int y; int buf [3][];
for (x1 =0 ; x1 < 2 ; x1++)
f 2 = 2 - 1 2 < 2 2++
or (x Lo XL s 2 X) £i11(buf);

for (x3 = x1 ; x3 < x2 ; x3++)
y = func(bufl...][...])

1 0 0 0

) 2

1 -1 _2
0 x2 <

0 1 0 2

1 0 —1| \x 0

0 -1 1 0

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

C Input Code

J

Extract Polyhedral Model Representation from Input Code

Augment Find a Loop
Polyhedral Transformation
Description to allow

with SDRAM elimination of
Row and Burst redundant
dimensions variables

Generate
Polyhedron
Scanning Code
with optimal
ordering

Generate Pipelined Address Generator from Scanning Code

Pipelined Verilog Address Generator

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Representing SDRAM Parameters Explicitly

» Memory references are affine functions
» eg. fx + c = 7*x1 + 8*x2 + 9*x3
» Array offset represented by constant (c)

» Can represent SDRAM rows (r) and bursts (u) exactly
> R is num/rows in a SDRAM bank, B is num/bursts in a SDRAM

row
{fx—l—cJ {fx—i—c— RrJ
r = Uu=|—m—-—

.. R=16 B=4
» or using linear inequalities

fx+c+R-—1<Rr<fx+c
fx+c—rR—B+1<Bu<fx+c—1rR

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

» Augmented matrix captures each loop iteration and its
associated SDRAM row (r) and burst (u)

1 0 0 0 0 0
1 0 0 0 0 2
-1 -1 0 0 0of /. 2
0O 1 0 0 0 2
1 0 -1 0o ol 0
0 -1 1 0o ol |®[=] o
7 8 9 —R 0 r 15
-7 -8 =9 R 0 u 0
7 8 9 —R -B 3
7 -8 -9 R B 0

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Optimization of Array Pre-fetching Code

» We can reconstruct code in the form of a loop nest which
visits every point in the polytope
» Use Cloog' to create code scanning rows at the outer-most loop
level
» Create code which ‘scans’ through rows at the outermost loop level
» Generated code has minimal number of row-swaps
» Code still contains redundant accesses
> e.g. inexamplex=(0 2 1)andx= (1 1 1) both
access row 1, burst 2.
» Wish to remove those redundant accesses by elimination of
variables.

1 Code Generation in the Polyhedral Model is easier than you think
Cedric Bastoul et al 2004

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Elimination of Variables

» Use existing results from the operations research field?

» Safe conditions for eliminating a variable from an integer set

> New two stage approach:

» Find a loop transformation to maximize the number of

eliminated variables
» Eliminate all variables which meet the conditions for safe

elimination

» Corresponds to reduction of the area of generated address sequencer

2The Elimination of Integer Variables H.P. Williams 1992

S. Bayliss and G. A. Constantinides
Optimizing SDRAM Bandwidth

5 Variables

A

-1 0 0 0
1 0 0 0
-1 -1 0 0
0 1 0 0
1 0 -1 0
0 -1 1 0
7 8 9 —R
-7 -8 -9 R
7 8 9 —R
-7 -8 -9 R

Using Ioop%

Transformation

v

WWoooocoocoooo

AP PP OOCOOCOOCOO

3 Variables
—29 12 48
2 —4 -1
-1 2 0
—-11 16 4
-1 0 0
1 0 0
1 -2 0

sting safe

variable
elimination
conditions

Imperial College
London

Code Generation

» We can take the reduced polyhedron and use existing
techniques to produce code to visit each integer point within
the (reduced) polytope

» Define an order which generates nested loops with ‘row’
variable as the outermost loop

» Taking the AST produced by Cloog, we generate a fully
pipelined address sequencer

» Sequencer gives one SDRAM address (row and burst) per cycle

» Auto-pipelining allows high frequency operation

S. Bayliss and G. A. Constantinides
Optimizing SDRAM Bandwidth

Imperial College

London

How well do we do?

Benchmark Level | Read/Write Cycles Total Cycles
MMM t=1 5012 (94.00%) 5332
MMM t=2 66804 (91.54%) 72978
MMM t=3 590000 (73.86%) 798804
MMM Orig. | 2000004 (23.78%) 8410260
SOB t=1 8920 (94.93%) 9396
SOB t=2 77328 (71.18%) 108632
SOB t=3 180300 (32.43%) 523646
SOB t=4 442932 (32.58%) 1359474
SOB Orig. 839236 (24.18%) 3471284
GBS t=1 1832 (91.88%) 1994
GBS t=2 13888 (67.90%) 20454
GBS Orig. 61348 (25.55%) 240106

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

What was the impact on bandwidth efficiency?

Bus Utilization
R
7] Refresh
@xxzs Precharge/Activate
875754 Bus-Turnaround
C— Read/Write

% of total cycles

n, ‘m, ‘w, W, Sop. S0, SO, SOm. SO, Gpo 8o On
Wy, My, My, My, %, %%, "8, "8, “Og, S 88y 8y
my ma mw k%u my m% m@ aﬁ Q%U my m@ k%U

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

How big were the generated address sequencers?

Benchmark Level | Req. on-chip ALUTs Regs Frequency
mem. words
MMM t=1 61200 575 764 296 MHz
MMM t=2 21200 1050 1666 174 MHz
MMM t=3 416 1346 2098 179 MHz
MMM Orig. 0 1003 2740 184 MHz
SOB t=1 11411 592 717 300 MHz
SOB t=2 579 1551 2251 182 MHz
SOB t=3 19 1355 1907 144 MHz
SOB t=4 7 1200 2566 153 MHz
SOB Orig. 0 1107 3607 148 MHz
GBS t=1 2772 833 1156 242 MHz
GBS t=2 288 952 1366 211 MHz
GBS Orig. 0 804 2263 186 MHz

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

What is the big picture?

» We demonstrate up to 4x improvement in bandwidth
efficiency through transaction reordering

> Results show a methodology for automatically exploring at
compile-time, the trade-off between the amount of on-chip
memory used to buffer data and the number of off-chip
memory transactions issued

» Tool automatically generates pipelined address sequencers
operate at frequencies which can saturate the memory
interface and a cost of up to 1.4x increase in the LUTs
dedicated to address generation

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Where do we go from here?

» Can we match data-path and memory system throughput?

» Use the exact knowledge we have on memory access latency to
improve datapath resource sharing

» Can we deliver tight WCET bounds for real-time applications?

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Where do we go from here?

» Can we match data-path and memory system throughput?

» Can we deliver tight WCET bounds for real-time applications?

» Use new mathematical results on integer point counting to

tightly bound worst-case execution time for code kernels using
external SDRAM

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

Imperial College
London

Final remarks

Tool Availability

Tool will be available at website (http://cas.ee.ic.ac.uk/AddrGen)

Offline Questions
Can email me with any questions s.bayliss08@imperial.ac.uk

Acknowlegments

Many thanks to Sven Verdooleage for his Integer Set Library

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth

