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Introduction

» Many algorithms suitable for FPGA acceleration require
off-chip memory access

> Desirable to consider the cost of off-chip communication
up-front in the design process
> Using the Polyhedral Model, we can:

» Analyse communication cost at compile time
» Synthesize an efficient SDRAM memory controller
» Exploit Data Reuse and Transaction Reordering
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SDRAM Memory Characteristics

» Advantage : SDRAM is cheap, high capacity, commodity
memory

» Disadvantage : Internal device architecture means high
latency (20-30 clock cycles in FPGA)
» Physical device structure imposes timing constraints

» Explicit ‘activation’ of a row before data is read from it
» Explicit ‘precharge’ of a row before another row is ‘activated’

» Significant bandwidth difference improvements possible when
reordering external memory transactions

» Typically > 5x bandwidth difference between optimal and
worst-case performance
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» With predictable patterns of memory access
» Can Prefetch data
» SDRAM latency needn't impact bandwidth
» Can Reuse data in on-chip memory
> Reduce number of external memory transactions
» Can Reorder external memory transactions

> Reduce the number of SDRAM row-swaps: increase
bandwidth

Requirement

» Need a mathematical framework to analyze memory patterns
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Nested Loops in the Polyhedral Model

int A[56]; int y;
for (x1 0 ; x1 < 2 ; x1+4+ )
for (x2 1 ; x2 < 2 ; x2++ )
for (x3 = x1 ; x3 < x2 ; x3++ )
y = func ( A[7*xIN¢ 8%x2 + 9*x3] ) ;
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Nested Loops in the Polyhedral Model

int A[56]; int y;
for (x1 =0 ; x1 < 2 ; x1++ )
for (x2 = 2 - x1 ; x2 < 2 ; x2++ )
for 3 =x1 ; x3 < x2 ; x3++ )
y = Nunc( A[7*x1 + 8*x2 + 9%x3] ) ;
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Nested Loops in the Polyhedral Model

int A[56]; int y;
for (x1 =0 ; x1 < 2 ; x1++ )
for (x2 = 2 - x1 ; x2 < 2 ; x2++ )
for (x3 = x1 ; x3 < x2 ; x3++ )
y = func( A[7*x1 + 8%x2 + 9*x3] )
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Nested Loops in the Polyhedral Model
param t=1
int A[56]; int y; int buf [5][];
for (x1 =0 ; x1 < 2 ; x1++ )
for (x2 = 2 - x1 ; x2 < 2 ; x2++ )
for (x3 = x1 ; x3 < x2 ; x3++ )
y = func( buf[...][...] )

—— fill (&buf);

1 0 0 0

) 2

1 -1 _2
0 x2 <

0 1 0 2
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Nested Loops in the Polyhedral Model
param t=2
int A[56]; int y; int buf [3][];
for (x1 =0 ; x1 < 2 ; x1++ ) £i11 (&buf) ;
for (x2 = 2 - x1 ; x2 < 2 ; x2++ )
for (x3 = x1 ; x3 < x2 ; x3++ )
y = func( buf[...][...] )
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Nested Loops in the Polyhedral Model

param t=3
int A[56]; int y; int buf [3][];
for (x1 =0 ; x1 < 2 ; x1++ )
f 2 = 2 - 1 2 < 2 2++
or (x Lo XL s 2 X ) £i11(buf);

for (x3 = x1 ; x3 < x2 ; x3++ )
y = func( bufl...][...] )
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dimensions variables
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Generate Pipelined Address Generator from Scanning Code

Pipelined Verilog Address Generator
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Representing SDRAM Parameters Explicitly

» Memory references are affine functions
» eg. fx + c = 7*x1 + 8*x2 + 9*x3
» Array offset represented by constant (c)

» Can represent SDRAM rows (r) and bursts (u) exactly
> R is num/rows in a SDRAM bank, B is num/bursts in a SDRAM

row
{fx—l—cJ {fx—i—c— RrJ
r = Uu=|—m—-—

.. R=16 B=4
» or using linear inequalities

fx+c+R-—1<Rr<fx+c
fx+c—rR—B+1<Bu<fx+c—1rR
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» Augmented matrix captures each loop iteration and its
associated SDRAM row (r) and burst (u)

1 0 0 0 0 0
1 0 0 0 0 2
-1 -1 0 0 0of /. 2
0O 1 0 0 0 2
1 0 -1 0o ol 0
0 -1 1 0o ol |®[=] o
7 8 9 —R 0 r 15
-7 -8 =9 R 0 u 0
7 8 9 —R -B 3
7 -8 -9 R B 0
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Optimization of Array Pre-fetching Code

» We can reconstruct code in the form of a loop nest which
visits every point in the polytope
» Use Cloog' to create code scanning rows at the outer-most loop
level
» Create code which ‘scans’ through rows at the outermost loop level
» Generated code has minimal number of row-swaps
» Code still contains redundant accesses
> e.g. inexamplex=(0 2 1)andx= (1 1 1) both
access row 1, burst 2.
» Wish to remove those redundant accesses by elimination of
variables.

1 Code Generation in the Polyhedral Model is easier than you think
Cedric Bastoul et al 2004
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Elimination of Variables

» Use existing results from the operations research field?

» Safe conditions for eliminating a variable from an integer set

> New two stage approach:

» Find a loop transformation to maximize the number of

eliminated variables
» Eliminate all variables which meet the conditions for safe

elimination

» Corresponds to reduction of the area of generated address sequencer

2The Elimination of Integer Variables H.P. Williams 1992
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5 Variables

A

-1 0 0 0
1 0 0 0
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Code Generation

» We can take the reduced polyhedron and use existing
techniques to produce code to visit each integer point within
the (reduced) polytope

» Define an order which generates nested loops with ‘row’
variable as the outermost loop

» Taking the AST produced by Cloog, we generate a fully
pipelined address sequencer

» Sequencer gives one SDRAM address (row and burst) per cycle

» Auto-pipelining allows high frequency operation
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How well do we do?

Benchmark Level | Read/Write Cycles  Total Cycles
MMM t=1 5012 (94.00%) 5332
MMM t=2 66804 (91.54%) 72978
MMM t=3 590000 (73.86%) 798804
MMM Orig. | 2000004 (23.78%) 8410260
SOB t=1 8920 (94.93%) 9396
SOB t=2 77328 (71.18%) 108632
SOB t=3 180300 (32.43%) 523646
SOB t=4 442932 (32.58%) 1359474
SOB Orig. 839236 (24.18%) 3471284
GBS t=1 1832 (91.88%) 1994
GBS t=2 13888 (67.90%) 20454
GBS Orig. 61348 (25.55%) 240106
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What was the impact on bandwidth efficiency?

Bus Utilization
R
7] Refresh
@xxzs Precharge/Activate
875754 Bus-Turnaround
C— Read/Write

% of total cycles

n, ‘m, ‘w, W, Sop. S0, SO, SOm. SO, Gpo 8o On
Wy, My, My, My, %, %%, "8, "8, “Og, S 88y 8y
my ma mw k%u my m% m@ aﬁ Q%U my m@ k%U
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How big were the generated address sequencers?

Benchmark Level | Req. on-chip  ALUTs Regs Frequency
mem. words
MMM t=1 61200 575 764 296 MHz
MMM t=2 21200 1050 1666 174 MHz
MMM t=3 416 1346 2098 179 MHz
MMM Orig. 0 1003 2740 184 MHz
SOB t=1 11411 592 717 300 MHz
SOB t=2 579 1551 2251 182 MHz
SOB t=3 19 1355 1907 144 MHz
SOB t=4 7 1200 2566 153 MHz
SOB Orig. 0 1107 3607 148 MHz
GBS t=1 2772 833 1156 242 MHz
GBS t=2 288 952 1366 211 MHz
GBS Orig. 0 804 2263 186 MHz
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What is the big picture?

» We demonstrate up to 4x improvement in bandwidth
efficiency through transaction reordering

> Results show a methodology for automatically exploring at
compile-time, the trade-off between the amount of on-chip
memory used to buffer data and the number of off-chip
memory transactions issued

» Tool automatically generates pipelined address sequencers
operate at frequencies which can saturate the memory
interface and a cost of up to 1.4x increase in the LUTs
dedicated to address generation
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Where do we go from here?

» Can we match data-path and memory system throughput?

» Use the exact knowledge we have on memory access latency to
improve datapath resource sharing

» Can we deliver tight WCET bounds for real-time applications?
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Where do we go from here?

» Can we match data-path and memory system throughput?

» Can we deliver tight WCET bounds for real-time applications?

» Use new mathematical results on integer point counting to

tightly bound worst-case execution time for code kernels using
external SDRAM
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Final remarks

Tool Availability

Tool will be available at website (http://cas.ee.ic.ac.uk/AddrGen)

Offline Questions
Can email me with any questions s.bayliss08@imperial.ac.uk

Acknowlegments

Many thanks to Sven Verdooleage for his Integer Set Library

S. Bayliss and G. A. Constantinides

Optimizing SDRAM Bandwidth



