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Introduction 

�  Clear architectural trend of parallelism and 
heterogeneity 

�  Heterogeneous devices have many tradeoffs 
�  Usage cases also affect best device choice 
�  Problem: huge design space 
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Huge Design Space 
• Which Accelerator? 
• Which Brand? 
• Number of cores? 
• Which Device? 

• Device Cost? 
• Design time? 
• Which algorithm? 
• Use case optimization? 
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Case Study: Sliding Window 

�  Contribution: thorough analysis of devices and use 
cases for sliding window applications 

�  Sliding window used in many domains, including 
image processing and embedded 
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Sliding Window Applications 

�  We analyze 2D Sliding Window with 16-bit grayscale image inputs 
�  Applies window function against a window from image and the kernel 
�  “Slides” the window to get the next input 
�  Repeats for every possible window 

�  45x45 kernel on 1080p 30-FPS video  = 120 billion memory accesses/second  

Window Kernel Window 0 

Window Function 

Output Pixel 
Window W-1 

Window 1 Input: image of size x×y, kernel of size n×m 
for (row=0; row < x-n; row++) { 
  for (col=0; col < y-m; col++) { 
    // get n*m pixels (i.e., windows  
    // starting from current row and col) 
    window=image[row:row+n-1][col:col+m-1]                            
    output[row][col]=f(window,kernel) 
  } 
} 
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App 1: Sum of Absolute 
Differences (SAD) 

�  Used for: H.264 encoding, object identification 
�  Window function: point-wise absolute 

difference, followed by summation 
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Ox = 0; 
For pixel in window: 
     Ox += abs(pixeli – kerneli)  
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App 2: 2D Convolution 

� Used for: filtering, edge detection 
� Window function: point-wise product 

followed by summation 
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Ox Output Pixel 
Ox = 0; 
For pixel in window: 
     Ox += (pixeli x kerneln-i)  
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App 3: Correntropy 

� Used for: optical flow, obstacle avoidance 
� Window function: Gaussian of point-wise 

absolute difference, followed by summation 
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Ox = 0; 
For pixel in window: 
     Ox += Gauss(abs(pixeli – kerneli)) 
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Devices Targeted 
Type Device Board Node Host CPU OS Library 

FPGA Altera Stratix 
III E260 

GiDEL 
ProcStar 
III PCIe x8 

65 nm 2.26 GHz 4-core 
45 nm Xeon 
E5520 

Red Hat 
Enterprise 5 
64-bit 
Server  

Quartus 
II 9.1 

GPU Nvidia  
GeForce GTX 
295, Compute 
Capability 1.3 

EVGA 
PCIe x16 

55 nm 2.67 GHz 4-core 
Intel Xeon 
W3520  

Red Hat 
Enterprise 5 
64-bit 
Server  

CUDA 
Version 
3.2 

CPU 2.67 GHz Intel 
Xeon 4-core 
W3520  

N/A 45 nm  N/A Windows 7 
Enterprise 
64-bit 

OpenCL 
Intel SDK 
1.1 

�  Process nodes not the same; Devices are best of product cycle (2009) 
�  FPGA host processor slower than CPU, GPU; host not used for 

computation 
�  Windows 7 used for CPU instead of Linux; OpenCL Intel SDK 1.1 

compatibility 
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Board 
FPGA 

FPGA Architecture 

1.  Architecture accepts input image, kernel from CPU 
over PCIe 

2.  Streams from off-chip DDR RAM to on-chip 
Window Generator 

3.  Window Generator delivers windows to datapath 
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Window Generator 

�  Must produce one window per cycle (up to 4 KB) 
�  Allows datapath to compute one output/cycle 
�  Capable of 400 GB/s throughput at 100 MHz 
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Window Generator 

�  When all windows involving row 1 are used, it is shifted out 
�  The register file is then set to the first window of the next row 
�  Continues until all windows are generated 
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Board 
FPGA 

FPGA Architecture 

�  Architecture accepts input image, feature from CPU over PCIe 
�  Streams from off-chip DDR RAM to on-chip Window Buffer 
�  Window buffer delivers windows to datapath 
�  Datapath computes one final output pixel per cycle 
�  Results are stored to off-chip DDR RAM, retrieved by CPU over 
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FPGA Datapaths 

�  SAD datapath is fully pipelined up to 45x45 kernels: 
1.  Point-wise subtract every window and kernel element 
2.  Absolute value of the result 
3.  Input to pipelined adder tree 

�  2D Convolution replaces subtract and absolute operations 
with multiply, reverses order 
�  Fully pipelined up to 25x25 kernels 
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FPGA Datapaths Cont. 
�  Correntropy adds 

Gaussian, max 
value steps to 
pipeline 

�  Gaussian 
approximated by 
64-entry lookup 
table, provides 
necessary 
accuracy 

�  Monitors output 
and stores 2 
highest values 
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GPU CUDA Framework 

� Based on previous work designed to 
handle similar data structure 
�  Achieved comparable speed for the same 

kernel sizes  
�  Allows larger kernel and image sizes 

� Created a framework for sliding window 
apps 

� Main challenge is memory access 
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GPU CUDA Framework Cont. 

�  Image stored in global memory (large capacity, slow reads) 
�  Entire kernel stored, and an image subset, in each thread 

block’s shared memory (low capacity, quick reads)  
�  Image subset is 32x16 Macro Blocks of 2x2 output pixels 
�  Each thread handles one Macro Block (4 output pixels) 

�  Previous work used Macro Blocks of 8x8 output pixels 
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GPU Implementations 
� SAD: each thread computes SAD 

between kernel and the 4 windows in its 
Macro Block 

�  2D Convolution: like SAD, but with 
multiply-accumulate 

�  2D FFT Convolution: used CUFFT to 
implement frequency domain version 

� Correntropy: adds Gaussian lookup 
table to SAD, computes max values in 
parallel post processing 
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CPU OpenCL Implementations 

�  Focused on memory management and 
limiting communication between threads 
�  Followed Intel OpenCL guidelines 

�  Create a 2D NDRange of threads with 
dimensions equal to the output 

�  Store image, kernel, output in global 
memory 

�  Straightforward SAD, 2D Convolution, and 
Correntropy implementations 
�  Correntropy post-processes for max values 
�  FFT convolution found to be slower, not included 
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Experimental Setup 
�  Evaluated SAD, 2D Convolution, and Correntropy 

implementations for FPGA, GPU, and Multicore 
�  Estimated performance for “single-chip” FPGAs and 

GPUs 
�  Used sequential C++ implementations as a baseline 
�  Tested image sizes with common video resolutions: 

�  640×480 (480p) 
�  1280×720 (720p) 
�  1920×1080 (1080p) 

�  Tested kernels of size: 
�  SAD and correntropy: 4×4, 9×9, 16×16, 25×25, 36×36, 

45×45 
�  2D convolution: 4×4, 9×9, 16×16, 25×25 
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Application Case Studies 
Sum of Absolute Differences 

�  FPGA performance consistent across kernels 
�  GPU best at small kernels, FPGA best for large 
�  Performance of all implementations scales with image size 
�  Only FPGA gets real-time performance at high kernel sizes 
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Application Case Studies 
2D Convolution 

�  Similar trends to SAD 
�  FPGA and GPU-FFT performance consistent across kernels 
�  GPU time domain best at small kernels, GPU-FFT best for large 
�  Only FPGA gets real time performance at high kernel sizes 
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Application Case Studies 
Correntropy 

� Very similar trends to SAD 
� Only FPGA gets real-time performance at 

high kernel sizes 
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Speedup 

�  Speedup for 720p over C++ baseline, 480p and 1080p data omitted 
�  FPGA speedup increases with kernel size, up to 298x 
�  FPGA up to 57x faster than OpenCL, 11x faster than GPU 
�  GPU-FFT averages 3x faster than FPGA for 2D convolution 
�  OpenCL speedup averages 4.2x over baseline CPU  
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Single Chip Implementations 

�  Results shown for 720p images 
�  FPGA uses up to 64% of execution time on PCIe transfers 

�  Weakness of x8 PCIe bus 
�  GPU uses up to 65% 

�  Communication amortized by lengthy computation of large kernels 
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Energy Comparison 

�  Sliding window often used in embedded systems 
�  Energy calculated as (worst case power x execution time) 
�  FPGA most efficient, lead increases with kernel size 
�  GPU competitive despite much larger power consumption 
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Future Work 

� Motivates our future work, which does 
this analysis automatically 

� Elastic Computing, an optimization 
framework, chooses the most efficient 
device for a given application and input 
size 
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Conclusion 

�  FPGA has up to 57x speedup over 
multicores and 11x over GPUs 

� Efficient algorithms such as FFT 
convolution make a huge difference 

�  FPGA has best energy efficiency by far 
�  FPGA architecture enables real-time 

processing of 45x45 kernels on 1080p 
video 
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