
Jeremy Fowers, Greg Brown, Patrick Cooke, Greg Stitt
University of Florida

Department of Electrical and Computer Engineering

Introduction

�  Clear architectural trend of parallelism and
heterogeneity

�  Heterogeneous devices have many tradeoffs
�  Usage cases also affect best device choice
�  Problem: huge design space

Problem

Solution

CPU CPU CPU CPU CPU

Problem

Solution

Execution time: 10 sec Execution time: 2.5 sec

CPU FPGA PCI

CPU GPU PCI

Orders of Magnitude
Improvement

CPU

CPU CPU

GPU

FPGA

Clock Rate
Base

Complexity
Base

Parallelism
Base

Power
Base

E
xe

cu
tio

n
Ti

m
e

Task Size

Sequential CPU Multicore CPU

GPU
FPGA

Huge Design Space
• Which Accelerator?
• Which Brand?
• Number of cores?
• Which Device?

• Device Cost?
• Design time?
• Which algorithm?
• Use case optimization?

2

Case Study: Sliding Window

�  Contribution: thorough analysis of devices and use
cases for sliding window applications

�  Sliding window used in many domains, including
image processing and embedded

CPU
CPU

CPU

CPU

CPU

GPU FPGA

Devices Algorithms Use Cases

K
er

ne
l S

iz
e

Image Size Correntropy Convolution

Sum of Absolute Differences

3

Sliding Window Applications

�  We analyze 2D Sliding Window with 16-bit grayscale image inputs
�  Applies window function against a window from image and the kernel
�  “Slides” the window to get the next input
�  Repeats for every possible window

�  45x45 kernel on 1080p 30-FPS video = 120 billion memory accesses/second

Window Kernel Window 0

Window Function

Output Pixel
Window W-1

Window 1 Input: image of size x×y, kernel of size n×m
for (row=0; row < x-n; row++) {
 for (col=0; col < y-m; col++) {
 // get n*m pixels (i.e., windows
 // starting from current row and col)
 window=image[row:row+n-1][col:col+m-1]
 output[row][col]=f(window,kernel)
 }
}

4

App 1: Sum of Absolute
Differences (SAD)

�  Used for: H.264 encoding, object identification
�  Window function: point-wise absolute

difference, followed by summation

K
er

ne
l

W1

W
in

do
w

 X

W2

W3 W4

k1 k2

k3 k4

W1 W2 W3 W4

k1 k2 k3 k4

d1 d2 d3 d4 a1 a2 a3 a4

Ox
Output Pixel

Absolute Value()

Ox = 0;
For pixel in window:
 Ox += abs(pixeli – kerneli)

5

App 2: 2D Convolution

� Used for: filtering, edge detection
� Window function: point-wise product

followed by summation

K
er

ne
l

W1

W
in

do
w

 X

W2

W3 W4

k1 k2

k3 k4

W1 W2 W3 W4

k4 k3 k2 k1

p1 p2 p3 p4

Ox Output Pixel
Ox = 0;
For pixel in window:
 Ox += (pixeli x kerneln-i)

6

App 3: Correntropy

� Used for: optical flow, obstacle avoidance
� Window function: Gaussian of point-wise

absolute difference, followed by summation

W1 W2 W3 W4

k1 k2 k3 k4

a1 a2 a3 a4

Ox

Output Pixel

Absolute Difference

Ox = 0;
For pixel in window:
 Ox += Gauss(abs(pixeli – kerneli))

g1 g2 g3 g4

Gaussian Function()

7

Devices Targeted
Type Device Board Node Host CPU OS Library

FPGA Altera Stratix
III E260

GiDEL
ProcStar
III PCIe x8

65 nm 2.26 GHz 4-core
45 nm Xeon
E5520

Red Hat
Enterprise 5
64-bit
Server

Quartus
II 9.1

GPU Nvidia
GeForce GTX
295, Compute
Capability 1.3

EVGA
PCIe x16

55 nm 2.67 GHz 4-core
Intel Xeon
W3520

Red Hat
Enterprise 5
64-bit
Server

CUDA
Version
3.2

CPU 2.67 GHz Intel
Xeon 4-core
W3520

N/A 45 nm N/A Windows 7
Enterprise
64-bit

OpenCL
Intel SDK
1.1

�  Process nodes not the same; Devices are best of product cycle (2009)
�  FPGA host processor slower than CPU, GPU; host not used for

computation
�  Windows 7 used for CPU instead of Linux; OpenCL Intel SDK 1.1

compatibility

8

Board
FPGA

FPGA Architecture

1.  Architecture accepts input image, kernel from CPU
over PCIe

2.  Streams from off-chip DDR RAM to on-chip
Window Generator

3.  Window Generator delivers windows to datapath

DDR2
RAM

Mem
Control

Window
Generator

Kernel
Registers

Datapath Mem
Control

DDR2
RAM

Host CPU

P
C

Ie
 B

us

Image
Data

Kernel Data

Image
Data

Kernel Data

Window
Data

9

I1,1 I1,2 I1,3 I1,4 I1,5

I2,1 I2,2 I2,3 I2,4 I2,5

I3,1 I3,2 I3,3 I3,4 I3,5

Window Generator

SRAM 1

SRAM 2

SRAM 3

I1,1 I1,2 I1,3

I2,1 I2,2 I2,3

I3,1 I3,2 I3,3

Register File

I1,5

I2,5

I3,5

I1,4

I2,4

I3,4

Window Generator

�  Must produce one window per cycle (up to 4 KB)
�  Allows datapath to compute one output/cycle
�  Capable of 400 GB/s throughput at 100 MHz

Sequential
Image Data

For a 3x3 Kernel and 5x5 Image

Complete
Windows

10

Window Generator

�  When all windows involving row 1 are used, it is shifted out
�  The register file is then set to the first window of the next row
�  Continues until all windows are generated

Sequential
Image Data

I1,1 I1,2 I1,3 I1,4 I1,5

I2,1 I2,2 I2,3 I2,4 I2,5

I3,1 I3,2 I3,3 I3,4 I3,5

For a 3x3 Kernel and 5x5 Image

Window Generator

SRAM 1

SRAM 2

SRAM 3

Register File

Complete
Windows

I1,3 I1,4 I1,5

I2,3

I3,3

I2,4

I3,4

I2,5

I3,5

I4,1 I4,2 I4,3 I4,4 I4,5

I2,1 I2,2 I2,3

I3,1 I3,2 I3,3

I4,1 I4,2 I4,3

11

Board
FPGA

FPGA Architecture

�  Architecture accepts input image, feature from CPU over PCIe
�  Streams from off-chip DDR RAM to on-chip Window Buffer
�  Window buffer delivers windows to datapath
�  Datapath computes one final output pixel per cycle
�  Results are stored to off-chip DDR RAM, retrieved by CPU over

PCIe

DDR2
RAM

Mem
Control

Window
Generator

Kernel
Registers

Datapath Mem
Control

DDR2
RAM

Host CPU

P
C

Ie
 B

us
 Image

Data

Image Data

Image
Data

12

FPGA Datapaths

�  SAD datapath is fully pipelined up to 45x45 kernels:
1.  Point-wise subtract every window and kernel element
2.  Absolute value of the result
3.  Input to pipelined adder tree

�  2D Convolution replaces subtract and absolute operations
with multiply, reverses order
�  Fully pipelined up to 25x25 kernels

	

Reg

-

w[i][j] k[i][j] w[i+1][j] k[i+1][j] w[i+n][j+m] k[i+n][j+m]

2*n*m inputs

. . . .

. . . .

. . . .

Pipelined Adder Tree

output[i][j]

Reg

-

Reg

-

absabsabs

13

FPGA Datapaths Cont.
�  Correntropy adds

Gaussian, max
value steps to
pipeline

�  Gaussian
approximated by
64-entry lookup
table, provides
necessary
accuracy

�  Monitors output
and stores 2
highest values

	

Reg

-

w[i][j] k[i][j] w[i+1][j] k[i+1][j] w[i+n][j+m] k[i+n][j+m]

2*n*m inputs

. . . .

. . . .

. . . .

Pipelined Adder Tree

max1

64 word
RAM

Reg

<

64

0

Reg

-

64 word
RAM

Reg

<

64

0

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

>
Reg

Gaussian

Reg

max2

abs abs

14

GPU CUDA Framework

� Based on previous work designed to
handle similar data structure
�  Achieved comparable speed for the same

kernel sizes
�  Allows larger kernel and image sizes

� Created a framework for sliding window
apps

� Main challenge is memory access

15

GPU CUDA Framework Cont.

�  Image stored in global memory (large capacity, slow reads)
�  Entire kernel stored, and an image subset, in each thread

block’s shared memory (low capacity, quick reads)
�  Image subset is 32x16 Macro Blocks of 2x2 output pixels
�  Each thread handles one Macro Block (4 output pixels)

�  Previous work used Macro Blocks of 8x8 output pixels

16

 Macro
Block
of 2x2
pixels

32x16 Macro Blocks,
or 64x32 Pixels

Kernel Width – 1
pixels

Subset of output
computed by this block

Extra data required for
computing boundary pixels

Kernel
Height -1

pixels

GPU Implementations
� SAD: each thread computes SAD

between kernel and the 4 windows in its
Macro Block

�  2D Convolution: like SAD, but with
multiply-accumulate

�  2D FFT Convolution: used CUFFT to
implement frequency domain version

� Correntropy: adds Gaussian lookup
table to SAD, computes max values in
parallel post processing

17

CPU OpenCL Implementations

�  Focused on memory management and
limiting communication between threads
�  Followed Intel OpenCL guidelines

�  Create a 2D NDRange of threads with
dimensions equal to the output

�  Store image, kernel, output in global
memory

�  Straightforward SAD, 2D Convolution, and
Correntropy implementations
�  Correntropy post-processes for max values
�  FFT convolution found to be slower, not included

18

Experimental Setup
�  Evaluated SAD, 2D Convolution, and Correntropy

implementations for FPGA, GPU, and Multicore
�  Estimated performance for “single-chip” FPGAs and

GPUs
�  Used sequential C++ implementations as a baseline
�  Tested image sizes with common video resolutions:

�  640×480 (480p)
�  1280×720 (720p)
�  1920×1080 (1080p)

�  Tested kernels of size:
�  SAD and correntropy: 4×4, 9×9, 16×16, 25×25, 36×36,

45×45
�  2D convolution: 4×4, 9×9, 16×16, 25×25

19

Application Case Studies
Sum of Absolute Differences

�  FPGA performance consistent across kernels
�  GPU best at small kernels, FPGA best for large
�  Performance of all implementations scales with image size
�  Only FPGA gets real-time performance at high kernel sizes

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30 40 50

480p 720p 1080p

Fr
am

es
	
 P
er
	
 Se

co
nd

Kernel	
 Size	
 (N	
 x	
 N)

30 FPS

20

Application Case Studies
2D Convolution

�  Similar trends to SAD
�  FPGA and GPU-FFT performance consistent across kernels
�  GPU time domain best at small kernels, GPU-FFT best for large
�  Only FPGA gets real time performance at high kernel sizes

0 10 20 30

0.1

1

10

100

1000

0 10 20 30 0 10 20 30

480p 720p 1080p

Kernel	
 Size	
 (N	
 x	
 N)

Fr
am

es
	
 P
er
	
 Se

co
nd

21

Application Case Studies
Correntropy

� Very similar trends to SAD
� Only FPGA gets real-time performance at

high kernel sizes

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30 40 50

480p 720p 1080p

Fr
am

es
	
 P
er
	
 Se

co
nd

Kernel	
 Size	
 (N	
 x	
 N)

22

Speedup

�  Speedup for 720p over C++ baseline, 480p and 1080p data omitted
�  FPGA speedup increases with kernel size, up to 298x
�  FPGA up to 57x faster than OpenCL, 11x faster than GPU
�  GPU-FFT averages 3x faster than FPGA for 2D convolution
�  OpenCL speedup averages 4.2x over baseline CPU

Sp
ee

du
p	

ov
er
	
 	
 C
++

Kernel	
 Size	
 (N	
 x	
 N)

1

10

100

1000

0 10 20 30 40 50 0 10 20 30

SAD Convolution Correntropy

0 10 20 30 40 50

23

Single Chip Implementations

�  Results shown for 720p images
�  FPGA uses up to 64% of execution time on PCIe transfers

�  Weakness of x8 PCIe bus
�  GPU uses up to 65%

�  Communication amortized by lengthy computation of large kernels

	

Sp
ee

du
p	

ov
er
	
 P
CI
e

Kernel	
 Size	
 (N	
 x	
 N)

0

1

2

3

0 10 20 30 40 50 0 10 20 30 0 10 20 30 40 50

SAD Convolution Correntropy

24

Energy Comparison

�  Sliding window often used in embedded systems
�  Energy calculated as (worst case power x execution time)
�  FPGA most efficient, lead increases with kernel size
�  GPU competitive despite much larger power consumption

0 10 20 30 40 50

0.1

1

10

100

1000

0 10 20 30 40 50 0 10 20 30

En
er
gy
	
 (J
ou

le
s)

SAD Convolution Correntropy

Kernel	
 Size	
 (N	
 x	
 N)

25

Future Work

� Motivates our future work, which does
this analysis automatically

� Elastic Computing, an optimization
framework, chooses the most efficient
device for a given application and input
size

26

Conclusion

�  FPGA has up to 57x speedup over
multicores and 11x over GPUs

� Efficient algorithms such as FFT
convolution make a huge difference

�  FPGA has best energy efficiency by far
�  FPGA architecture enables real-time

processing of 45x45 kernels on 1080p
video

27

