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GORILLA METHODOLOGY 
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Gorilla in a Nutshell 
• An FPGA solution for data parallel applications 
that are inefficient on CPUs and GPGPUs 
•  Many data elements to process 
•  Irregular data structures 

•  E.g., trees, graphs 
•  High throughput , random memory access requirements 

•  Execution path highly data dependent 
•  SIMD is inefficient (e.g. packet processing, iterative refinement) 

•  Computation amenable to acceleration via specialized hardware 
•  Original idea formed and patented in Avici Systems (patent# 

7823091 ) 
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Gorilla Methodology 
• Domain expert writes in stylized C (domain code) 
• Hardware designer writes parameterized hardware 

components (hardware template) 
•  Parameters may be values or code 
•  Functional parameters 

•  E.g., IPv4 code or IPv6 code 
•  Performance parameters 

•  Number of threads, packets in flight, scheduling policy 

•  Tools automatically  
•  Merge domain code with hardware templates 
•  Explore the design space to meet the design constraints   

• Sharp contrast with C-to-gates approaches  
•  Gorilla uses predesigned template for the target hardware 
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Gorilla Design Process 
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Execution Model 
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•  A single processing kernel is applied on each input data element and 
generates an output data (infinite loop) 

•  kernel is modeled as a  set of processing steps 
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•  Each step is written as a C function  
•  Arithmetic/logic operation on program input and context variables 

(globally visible to all functions)  
•  call to special purpose accelerators 
•  Explicit, computed jump to next step 

 
 

 

Domain Code - Programming Model 
instr_addr_t  IP_CLASSIFY() 
{   IP_protocol_t   wordx; 
     
    //Lookup the destination address 
    Dport = LOOKUPX.search(Da); 
 
    //Read the TTL and Chksum fields  
    wordx =  MEMX.read(PP, TTL_WORD); 
    TTL = wordx.TTL; 
    Chksum = wordx.CHKSUM; 
    TTL = TTL – 1; 
    Chksum = Update_chksum(Chksum); 
    switch (TTL == 0) { 
       case OK: Next_step = NP_INSTR_EMIT; 
       default: Next_Step =   

   NP_INSTR_EXCEPTION; 
} 
} 
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A Programmable Engine 
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Engine 

Scaling Throughput 

•  Multiple engine contexts 
•  Multi-threaded engines 
•  Multiple engines 

•  Contexts increase performance until 
an accelerator becomes the 
bottleneck 

Control state 
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Pipelined Engines 
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•  Multithreading the engines 
and engine duplication are 
not the only ways for 
increasing the throughput 

•  Pipelining the engine is 
possible providing 
•  No backward jumps between 

processing steps 
•  Access to an accelerator is 

restricted to a given pipe stage 
•  Pipelining has sometimes 

lower overhead than other 
solutions 
•  No thread management 

overhead 
•  No duplication overhead  



Gorilla Compilation Process 
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Written in ANTLR 



CASE STUDY: 
 NETWORK PROCESSOR 
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Packet Header Processing 



Packet Processing Hardware Template 
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Experimental Results -  100MPPS on   
Virtex-6 VHX380T  
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Experimental Results -  200MPPS on 
Virtex-7 VHX870T  



Board Implementation 
• Gorilla-generated network processor (IPv4 only) on 

ML605 (Xilinx Virtex-6 XC6VLX240T) 
•  Emulate QDRs with accurate timing in BRAMs 

•  16-3-2 configuration delivers 100MPPS  
•  Most logic running at 100Mhz 
•  Consistent with simulation results  

• Random packet generator and statistics collector 
• Measured core power (excluding the I/O) less than 4 

watts 
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Comparing with CPU/GPGPU based 
systems 

•  Network processor on a single Xilinx Virtex-7 VHX870T FPGA 
•  Achieved 200MPPS throughput (100 Gbps) for packet processing 
•  More than six times the performance of 32 Nehalem cores 

•  Routebricks[SOSP09] 
•  Twice the performance of 8 Nehalem cores, 2 Nvidia GTX480 GPUs 

•  Packetshader[Infocom10] 
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Conclusion 
• A methodology for designing FPGA-based hardware for 

an interesting class of applications 

• Network processing example is two orders of magnitude 
better power/performance than best CPU/GPGPU 
solutions 

•  Implementing additional applications using this 
infrastructure 
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Thank you 
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FPGA utilization IPv4/IPv6/MPLS 

21 



Gorilla and  NetFPGA 

•  Eight clusters  
•  Netfpga system includes MACs for 4*10G Ethernet 
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Evaluation process – simulation part 
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Pin budgeting 

Configurations with * are not feasible in a single FPGA 
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Gorilla performance  
•  Architectural  

•  Fast synchronization and customization between processing engines 
and accelerators 

•  Maximize the utilization of scarce resources like (on-chip memory, pins) 
•  FPGA specific 

•  Large parallelism and wide datapath to compensate low frequency 
•  Flexibility in design to match the FPGA resource distribution 

•  Productivity  
•  Template based design  

•  Decoupling the functionality from performance related structures  
•  Design space exploration for getting the area and timing closure  
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Thread scaling 

Eight clusters/ Four engines 
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Consolidating virtual routers 
• When consolidation multiple routers with different 

protocols 
•  Merged routers: All engines support all protocol 
•  Isolated routers: Each router accommodate the necessary 

resources for its own protocol 

• Merged routers is not fully efficient because we don’t need 
all engines to be equipped to process all protocols 

•  Isolated routers duplicates the infrastructure resources 
• We want to merge routers together when they have 

similar functionality and not merge routers with different 
functionality 
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Consolidating virtual routers - continue 
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IPv4 steps(simplified) 
IPv4_check() { 
  status = IPv4_header_integrity_check(Header); 
  if (status == CHKSUM_OK)  
    Next_step = IPv4_lookup; 
  else  
    Next_step = Exception;} 
 
IPv4_lookup() { 
  Da_class = lookupx.search(Header.IPv4_dstaddr); 
  Sa_class = lookupy.search(Header.IPv4_srcaddr); 
  if (Da_class == NOT_FOUND) 
    Next_step = Exception; 
  else if(Sa_class == NOT_FOUND) 
    Next_step = Exception; 
  else 
    Next_step = IPv4_modify;} 
 
IPv4_modify() { 
  if((IP_update_fields(Header) == ZERO_TTL)) 
    Next_step = Exception; 
  else { 
    Dport = Da_class.dport; 
    Next_step = Emit;}} 
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IPv4 accelerator interface 
IPv4_check() { … } 
IPv4_lookup() { 
. 
. 
. 
  Da_class = lookupx.search(Header.IPv4_dstaddr); 
  Sa_class = lookupy.search(Header.IPv4_srcaddr); 
. 
. 
. 
Next_step = IPv4_QoS_count;} 
IPv4_QoS_count() { … } 
IPv4_update() { … } 
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Lookup steps (simplified) 
IPv4_lookup_first_level() { 
    Found = 0; 
    ip_address = Input; 
    mem_address = Trie_address(1, 0, ip_address); 
    trie_node = QDR_0.read(mem_address); 
    Found = Is_leaf(trie_node); 
    Next_step = IPv4_lookup_second_level; 
} 
 
IPv4_lookup_second_level() { 
    Base_address = Chase_pointer(trie_node); 
    mem_address = Trie_address(2, Base_address, ip_address); 
    if (!Found)  trie_node = QDR_1.read(mem_address); 
    Found = Is_leaf(trie_node); 
    Next_step = IPv4_lookup_third_level; 
} 
 
IPv4_lookup_third_level() { 
    Base_address = Chase_pointer(trie_node); 
    mem_address = Trie_address(3, Base_address, ip_address); 
    if (!Found) trie_node = QDR_2.read(mem_address); 
    Output = Equivalent_forwarding_class(trie_node); 
} 

31 



IPv4 lookup architecture 
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Major processing steps for packet 
processing 
• Engines 

•  IPv4 : 10 steps 
•  IPv6 : 12 steps 
•  MPLS : 13 steps 

•  Lookup 
•  IPv4 : 3 steps - Three level trie using QDRII memory 
•  IPv6 : 6 steps - Six level trie using QDRII memory 
•  MPLS : 3 steps - Two level   

•  First level is 4-way cache for second level, indexed with hash function 

• QoS counting 
•  3*72 counters per packet: 6 steps 

•  3 QDR read operations and 3 QDR write operations per packet 
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