
COMPILING HIGH
THROUGHOUT NETWORK
PROCESSORS
(PART OF THE GORILLA PROJECT)

Maysam Lavasani, Larry Dennison§,
Derek Chiou
University of Texas at Austin
§ Lightwolf Technologies

1

GORILLA METHODOLOGY

2

Gorilla in a Nutshell
• An FPGA solution for data parallel applications
that are inefficient on CPUs and GPGPUs
•  Many data elements to process
•  Irregular data structures

•  E.g., trees, graphs
•  High throughput , random memory access requirements

•  Execution path highly data dependent
•  SIMD is inefficient (e.g. packet processing, iterative refinement)

•  Computation amenable to acceleration via specialized hardware
•  Original idea formed and patented in Avici Systems (patent#

7823091)

3

Gorilla Methodology
• Domain expert writes in stylized C (domain code)
• Hardware designer writes parameterized hardware

components (hardware template)
•  Parameters may be values or code
•  Functional parameters

•  E.g., IPv4 code or IPv6 code
•  Performance parameters

•  Number of threads, packets in flight, scheduling policy

•  Tools automatically
•  Merge domain code with hardware templates
•  Explore the design space to meet the design constraints

• Sharp contrast with C-to-gates approaches
•  Gorilla uses predesigned template for the target hardware

4

Gorilla Design Process
5

Domain code

Select a hardware
template

Library of
hardware
templates

Functional parameters
specialization

Find initial seeds for
performance parameters

Performance evaluation

Architectural enhancement by
changing parameters

No

Yes

Hardware designer adds
new template or change

the current template

No

Performance parameters
specialization

Work loads

Met goals? Performance goals

Possible?
Yes

Manual step

Automatic step

Execution Model

6

•  A single processing kernel is applied on each input data element and
generates an output data (infinite loop)

•  kernel is modeled as a set of processing steps

7

•  Each step is written as a C function
•  Arithmetic/logic operation on program input and context variables

(globally visible to all functions)
•  call to special purpose accelerators
•  Explicit, computed jump to next step

Domain Code - Programming Model
instr_addr_t IP_CLASSIFY()
{ IP_protocol_t wordx;

 //Lookup the destination address
 Dport = LOOKUPX.search(Da);

 //Read the TTL and Chksum fields
 wordx = MEMX.read(PP, TTL_WORD);
 TTL = wordx.TTL;
 Chksum = wordx.CHKSUM;
 TTL = TTL – 1;
 Chksum = Update_chksum(Chksum);
 switch (TTL == 0) {
 case OK: Next_step = NP_INSTR_EMIT;
 default: Next_Step =

 NP_INSTR_EXCEPTION;
}
}

8

Context memory

Control state

Accelerator

Off-chip Memory

Engine

A Programmable Engine

9

Engine

Scaling Throughput

•  Multiple engine contexts
•  Multi-threaded engines
•  Multiple engines

•  Contexts increase performance until
an accelerator becomes the
bottleneck

Control state

Accelerator

Off-chip Memory

Context memory

Pipelined Engines
10

•  Multithreading the engines
and engine duplication are
not the only ways for
increasing the throughput

•  Pipelining the engine is
possible providing
•  No backward jumps between

processing steps
•  Access to an accelerator is

restricted to a given pipe stage
•  Pipelining has sometimes

lower overhead than other
solutions
•  No thread management

overhead
•  No duplication overhead

Gorilla Compilation Process
11

Written in ANTLR

CASE STUDY:
 NETWORK PROCESSOR

12

13

Packet Header Processing

Packet Processing Hardware Template

14

15

Experimental Results - 100MPPS on
Virtex-6 VHX380T

16

Experimental Results - 200MPPS on
Virtex-7 VHX870T

Board Implementation
• Gorilla-generated network processor (IPv4 only) on

ML605 (Xilinx Virtex-6 XC6VLX240T)
•  Emulate QDRs with accurate timing in BRAMs

•  16-3-2 configuration delivers 100MPPS
•  Most logic running at 100Mhz
•  Consistent with simulation results

• Random packet generator and statistics collector
• Measured core power (excluding the I/O) less than 4

watts

17

Comparing with CPU/GPGPU based
systems

•  Network processor on a single Xilinx Virtex-7 VHX870T FPGA
•  Achieved 200MPPS throughput (100 Gbps) for packet processing
•  More than six times the performance of 32 Nehalem cores

•  Routebricks[SOSP09]
•  Twice the performance of 8 Nehalem cores, 2 Nvidia GTX480 GPUs

•  Packetshader[Infocom10]

18

Conclusion
• A methodology for designing FPGA-based hardware for

an interesting class of applications

• Network processing example is two orders of magnitude
better power/performance than best CPU/GPGPU
solutions

•  Implementing additional applications using this
infrastructure

19

Thank you

20

FPGA utilization IPv4/IPv6/MPLS

21

Gorilla and NetFPGA

•  Eight clusters
•  Netfpga system includes MACs for 4*10G Ethernet

22

Evaluation process – simulation part

23

Pin budgeting

Configurations with * are not feasible in a single FPGA

24

Gorilla performance
•  Architectural

•  Fast synchronization and customization between processing engines
and accelerators

•  Maximize the utilization of scarce resources like (on-chip memory, pins)
•  FPGA specific

•  Large parallelism and wide datapath to compensate low frequency
•  Flexibility in design to match the FPGA resource distribution

•  Productivity
•  Template based design

•  Decoupling the functionality from performance related structures
•  Design space exploration for getting the area and timing closure

25

Thread scaling

Eight clusters/ Four engines

26

Consolidating virtual routers
• When consolidation multiple routers with different

protocols
•  Merged routers: All engines support all protocol
•  Isolated routers: Each router accommodate the necessary

resources for its own protocol

• Merged routers is not fully efficient because we don’t need
all engines to be equipped to process all protocols

•  Isolated routers duplicates the infrastructure resources
• We want to merge routers together when they have

similar functionality and not merge routers with different
functionality

27

Consolidating virtual routers - continue

28

IPv4 steps(simplified)
IPv4_check() {
 status = IPv4_header_integrity_check(Header);
 if (status == CHKSUM_OK)
 Next_step = IPv4_lookup;
 else
 Next_step = Exception;}

IPv4_lookup() {
 Da_class = lookupx.search(Header.IPv4_dstaddr);
 Sa_class = lookupy.search(Header.IPv4_srcaddr);
 if (Da_class == NOT_FOUND)
 Next_step = Exception;
 else if(Sa_class == NOT_FOUND)
 Next_step = Exception;
 else
 Next_step = IPv4_modify;}

IPv4_modify() {
 if((IP_update_fields(Header) == ZERO_TTL))
 Next_step = Exception;
 else {
 Dport = Da_class.dport;
 Next_step = Emit;}}

29

IPv4 accelerator interface
IPv4_check() { … }
IPv4_lookup() {
.
.
.
 Da_class = lookupx.search(Header.IPv4_dstaddr);
 Sa_class = lookupy.search(Header.IPv4_srcaddr);
.
.
.
Next_step = IPv4_QoS_count;}
IPv4_QoS_count() { … }
IPv4_update() { … }

30

Lookup steps (simplified)
IPv4_lookup_first_level() {
 Found = 0;
 ip_address = Input;
 mem_address = Trie_address(1, 0, ip_address);
 trie_node = QDR_0.read(mem_address);
 Found = Is_leaf(trie_node);
 Next_step = IPv4_lookup_second_level;
}

IPv4_lookup_second_level() {
 Base_address = Chase_pointer(trie_node);
 mem_address = Trie_address(2, Base_address, ip_address);
 if (!Found) trie_node = QDR_1.read(mem_address);
 Found = Is_leaf(trie_node);
 Next_step = IPv4_lookup_third_level;
}

IPv4_lookup_third_level() {
 Base_address = Chase_pointer(trie_node);
 mem_address = Trie_address(3, Base_address, ip_address);
 if (!Found) trie_node = QDR_2.read(mem_address);
 Output = Equivalent_forwarding_class(trie_node);
}

31

IPv4 lookup architecture

32

Major processing steps for packet
processing
• Engines

•  IPv4 : 10 steps
•  IPv6 : 12 steps
•  MPLS : 13 steps

•  Lookup
•  IPv4 : 3 steps - Three level trie using QDRII memory
•  IPv6 : 6 steps - Six level trie using QDRII memory
•  MPLS : 3 steps - Two level

•  First level is 4-way cache for second level, indexed with hash function

• QoS counting
•  3*72 counters per packet: 6 steps

•  3 QDR read operations and 3 QDR write operations per packet

33

