Octavo: An FPGA-Centric Processor Architecture

Charles Eric LaForest J. Gregory Steffan ECE, University of Toronto

FPGA 2012, February 24

Easier FPGA Programming

- We focus on overlay architectures
 - Nios, MicroBlaze, Vector Processors
 - These inherited their architectures from ASICs
 - Easy to use with existing software tools
 - Performance penalty
 - ASIC architectures poor fit to FPGA hardware!
- ASIC ≠ FPGA
 - ASIC: transistors, poly, vias, metal layers
 - FPGA: LUTs, BRAMs, DSP Blocks, routing
 - Fixed widths, depths, other discretizations

FPGA-centric processor design?

How do FPGAs Want to Compute?

Hardware (Stratix IV)	Width (bits)	Fmax (MHz)
DSP Blocks	36	480
Block RAMs	36	550
ALUTs	1	800
Nios II/f	32	230

What processor architecture best fits the underlying FPGA?

Research Goals

- 1. Assume threaded data parallelism
- 2. Run at maximum FPGA frequency
- 3. Have high performance
- 4. Never stall
- 5. Aim for simple, minimal ISA
- 6. Match architecture to underlying FPGA

Result: Octavo

- 10 stages, 8 threads, 550 MHz
- Family of designs
 - Word width (8 to 72 bits)
 - Memory depth (2 to 32k words)
 - Pipeline depth (8 to 16 stages)

Snapshot of work-in-progress

Designing Octavo

High-Level View of Octavo

Unified registers and RAM

Octavo vs. Classic RISC

- All memories unified (no loads/stores)
- How to pipeline Octavo?

Design For Speed: Self-Loop Characterization

Self-Loop Characterization

- Connect module outputs to inputs

 Accounts for the FPGA interconnect
- Pipeline loop paths to absorb delays
- Pointed to other limits than raw delay
 - Minimum clock pulse widths
 - DSP Blocks: 480 MHz
 - BRAMs: 550 MHz

We measured some surprising delays...

BRAM Self-Loop Characterization Μ Μ Μ Μ Μ Μ Μ Μ 398 MHz 531 MHz 656 MHz 710 MHz (routing!) Μ Μ Ň Μ Μ Μ Μ Ň Μ

Must connect BRAMs using registers 11

Building Octavo: Memory

Building Octavo: Memory

Replicated "scratchpad" memories with I/O while still exceeding 550 MHz limit.

Building Octavo: ALU

Fully pipelined (4 stages)
 – Never stalls

- Multiplication
 - Uses DSP Blocks
 - Must overcome their 480 MHz limit...

Building Octavo: Multiplier

One multiplier is wide enough but too slow

• Two multipliers working at half-speed

- Send data to both multipliers in alternation

Octavo: Putting It All Together

5¦

6¦

7¦

8[¦]

g

0¦

- 10 stages

3¦

2¦

4¦

- Actually 8 stages with one exception (more later)
- No result forwarding or pipeline interlocks
- Scalar, Single-Issue, In-Order, Multi-Threaded

5¦

6¦

7¦

8[¦]

g

3¦

2¦

4

- Indexed by current thread PC
- Provides a 3-operand instruction
- On-chip BRAMs only

Octavo 0 2¦ 3 **5**: A/B A/B

- A and B Memories
 - Receive operand addresses from instruction

6

7¦

8¦

g

- Provide data operands to ALU and Controller
 - Some addresses map to I/O ports
- On-chip BRAMs only

6

7¦

8

g

- Pipeline Registers
 - Avoid an odd number of stages
 - Separate BRAMs for best speed
 - Predicted by BRAM self-loop characterization
 - Unusual but essential design constraint

Controller

- Receives opcode, source/destination operands
- Decides branches
- Provides current PC of next thread to I memory

• ALU

- Receives opcode and data
- Writes result to all memories

Longest mandatory loop: 8 stages

 Along A/B memories and ALU
 Fill with 8 threads to avoid stalls

- Special case longest loop: 10 stages
 - Along instruction memory and ALU
 - Does not affect most computations
 - Adds a delay slot to subroutine and loop code

Results: Speed and Area

Experimental Framework

- Quartus 10.1 targeting Stratix IV (fastest)
 - Optimize and place for speed
 - Average speed over 10 placement runs
- Varied processor parameters:
 - Word width
 - Memory depth
 - Pipeline depth
- Measure Frequency, Area, and Density

Maximum Operating Frequency

Maximum Operating Frequency

Faster

Maximum Operating Frequency

Maximum Operating Frequency

Area Density

Area Density

"Sweet spot" 72 bits, 1024 words

Designing Octavo: Lessons & Future Work

Lessons

- Soft-processors can hit BRAM Fmax
 Octavo: 8 threads, 10 stages, 550 MHz
- Self-loop characterization for modules

 Helps reason about their pipelining
 Shows true operating envelopes on FPGA
- Octavo spans a large design space
 Significant range of widths, depths, stages

Consider FPGA-centric architecture!

Future Work

