

Rethinking FPGAs: Elude the Flexibility Excess of LUTs with And-Inverter Cones

Hadi P. Afshar

Joint work with: David Novo, Paolo Ienne, and Hind Benbihi

Motivation

Motivation

Outline

- And Inverter Cone (AIC)
- Mapping AIG Subgraphs to AICs
- Technology Mapping
- AIC Clustering
- Experiments
- Conclusions

And-Inverter Cone (AIC)

LUT vs. AIC

Multi-Output AICs

4-AIC

Multiple OutputsFracturable Structure

Multi-Output: LUTs vs. AICs

AICs Specifications

Block	inputs	outputs	2:1 mux	Config bits
2-AIC	4	1	3	3
3-AIC	8	3	7	7
4-AIC	16	7	15	15
5-AIC	32	15	31	31
6-AIC	64	31	63	63
6-LUT	6	1	63	64

≈ configuration

6-AIC can implement <u>larger</u> and <u>multiple</u> functions

AICs Specifications

	Block	inputs	outputs	2:1 mux	Config bits	
	2-AIC	4	1	3	3	
	3-AIC	8	3	7	7	
	4-AIC	16	7	15	15	~
≈ input counts	5-AIC	32	15	31	31	3-AIC is smaller
K	6-AIC	64	31	63	63	
	6-LUT	6	1	63	64	

Outline

- And Inverter Cone (AIC)
- Mapping AIG Subgraphs to AICs
- Technology Mapping
- AIC Clustering
- Experiments
- Conclusions

Mapping AIG Subgraphs to AICs

Graph-based Transformations

Mapping AIG Subgraphs to AICs

Mapping AIG Subgraphs to AICs

Outline

- And Inverter Cone (AIC)
- Mapping AIG Subgraphs to AICs
- Technology Mapping
- AIC Clustering
- Experiments
- Conclusions

Technology Mapping

What is the difference?

- <u>Depth</u> feasible cones
 - Rather than k-feasible cones
- Multi-output cones

LUT/AIC Breakdown

Average over all benchmarks

Outline

- And Inverter Cone (AIC)
- Mapping AIG Subgraphs to AICs
- Technology Mapping
- AIC Clustering
- Experiments
- Conclusions

Conventional LUT Cluster

AIC Cluster

AIC Cluster

Outline

- And Inverter Cone (AIC)
- Mapping AIG Subgraphs to AICs
- Technology Mapping
- AIC Clustering
- Experiments
- Conclusions

Experiments

- Altera Stratix III as the reference architecture
 - LAB with 10 ALMs
- Area model
 - Transistor level
 - In terms of minimum-width transistors
- Delay model
 - SPICE simulation
 - Feedback for the mapping
- VPR-6 with AAPack

Experiments

- Scenarios
 - Normal FPGA
 - LUT clusters (LAB)
 - Hybrid FPGA
 - Both LUT and AIC clusters
 - Fixed ratio of clusters (1:4)
 - AIC-based FPGA
 - Only AIC clusters
- MCNC Benchmarks

Block Level

Wire Delay Computation

Logic Block	Intra-cluster Wires		
LUT	50%		
6-AIC	34%		
LUT/6-AIC	35%		
LUT/5-AIC	37%		
LUT/4-AIC	38%		
LUT/3-AIC	40%		

 $Delay(wire) = \frac{Delay(intra) \times Percentage(intra) + Delay(inter) \times Percentage(inter)}{Delay(wire)} = \frac{Delay(intra) \times Percentage(intra) + Delay(inter) \times Percentage(inter)}{Delay(inter) \times Percentage(intra)} + \frac{Delay(intra) \times Percentage(intra)}{Delay(inter) \times Percentage(intra)} + \frac{Delay(inter) \times Percentage(inter)}{Delay(inter) \times Percentage(intra)} + \frac{Delay(inter) \times Percentage(inter)}{Delay(inter) \times Percentage(inter)} + \frac{Delay(inter) \times Percentage(inter)}{D$ 2

Total Delay (Geometric Mean)

Area (Clusters)

Conclusions

- Post-synthesis inspired logic-block
 - AIC: maps arbitrary AIG subgraphs
- 32% saving in delay
 - Rough estimation of routing delay
- 16% area reduction
- Few design points explored!
 - Routing network tailored for AICs
 - Logic matching targeting AICs

Thanks for your attention.

hadi.parandehafshar@epfl.ch

Future Explorations

• AICs as shadow Logic of FPGA Blocks

Shadow Logic

Shadow of DSP Block Shadow

Future Explorations

- AICs as shadow logic of FPGA Blocks
- Optimized routing
 - Clustering
 - Cluster Bandwidth
 - Crossbar
- Area recovery during mapping

AIC Cluster Example

36

Input Crossbar Scenarios

Area of LUT and AIC Clusters

Component	Area (Tr_{minW})
6-AIC block	1,512
6-AIC output Xbar	217
6-AIC FFs and muxes	$1,\!104$
AIC cluster input Xbar	22,072
AIC cluster out Xbar	$2,\!660$
AIC cluster buffers	$1,\!447$
AIC cluster with three 6-AICs	$34,\!678$
ALM	1,751
LAB in Xbar	$16,\!251$
LAB buffers	470
LAB with ten ALMs	34,231

Delay Paths of AIC Cluster

\mathbf{Path}	Description	Delay (ps)
$\mathbf{A} \to \mathbf{B}$	6-AIC main output	496
$\mathbf{B} \to \mathbf{C}$	crossbar and FF-Mux	75
$\mathrm{C} \to \mathrm{D}$	output crossbar of cluster	50

Wire Length

Benchmark	\mathbf{LUT}	LUT/	LUT/
		5-AIC	6-AIC
alu4	14.9	10.59	11.32
apex2	16.4	15.2	12.9
apex4	15.5	16.1	14.1
bigkey	14.3	12.6	11.6
$_{\rm clma}$	20.8	22.9	25.5
des	14.6	16.1	15.1
diffeq	10.4	13.4	13.8
dsip	18.6	17.4	12.5
elliptic	15.5	16.6	16.7
ex5p	11.2	15.9	23.2
ex1010	23.8	18.2	30.3
\mathbf{frisc}	18.8	19.35	23.2
misex3	14	12	13
pdc	22.8	23.4	21.2
s298	13.2	9.7	15.8
s38417	12.5	18.2	19
s38584.1	11.5	18.4	17.5
seq	17.1	15.5	15.5
$_{\rm spla}$	21.5	18.8	21.1
tseng	8.3	13.1	12.5