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Weasel words 
  My opinions are informed mostly through experience with 

FPGA as an accelerator employed in server-side systems. 
  NOTE:  The contents of this presentation are my own opinions and 

should not be interpreted as official statements from IBM 
  My experience and focus is on software architecture and 

optimization, not hardware design.  However, I will make a 
number of assumptions about the progress of hardware. 

  Predicting anything 20 years in the future in this industry is 
foolhardy but I am in good company.   
  My predictions err on the side of caution so don’t expect any science 

fiction. 

  My prediction in a nutshell is that FPGAs will become an 
integral part of every system and become opaque to users, 
developers and system administrators 



Three Predictions for 2032 
  Integration 

Reconfigurable logic in some form will be tightly integrated into virtually 
every system – server, communications, mobile and embedded.  It will be 
driven by different factors for different applications – time to market, cost 
reduction, high performance, low latency and/or power efficiency. 

  Programmability 
The reconfigurable logic elements will be programmed by software 
engineers in a manner consistent with other elements of the system.  
Explicitly parallel languages and tools will be in common use but so will 
automated code generation from higher level programming models. 

  Virtualization 
Reconfigurable logic will be securely and reliably managed as a dynamically 
shared resource across many virtual machines and tenants.  It will be a 
commonly utilized resource in cloud infrastructure.  



Integration – embedded and mobile 
  The drivers will be principally time to market and power efficiency. 
  Integrated CPU/FPGA SoC designs will be commonplace and reduce or 

eliminate the need for ASICs, providing single chip solutions for most 
mobile devices. 

  Mobile will drive the most diverse new requirements for FPGA due to 
evolving user interface technologies (natural language, haptics, 3D displays, 
geo-spatial reasoning, other AI) and the continuing evolution of wireless 
networks. 

  FPGA usage in embedded systems will expand, driven by greater system 
integration but also by improved programmability.  Automotive systems, for 
example, will exploit FPGAs extensively for telematics, entertainment and 
driver communications.  Of course cars should also be flying by 2032  



Integration – servers and storage  
  The driver will be principally price-performance. 
  Servers will have thoroughly adopted 3D integration by 2032 and integration of 

FPGA along with memory and conventional processors in 3D packages will be 
commonplace.  Indeed, single (3D) socket servers (memory + compute + I/O) will 
be the norm, interconnected optically and with optical integration at the package 
and chip level. 

  FPGAs will be co-located (again, probably using 3D packaging) with dense, storage-
class memory (e.g. phase-change memory) and provide a flexible processor-in-
memory solution. 

  FPGAs in servers are likely to be homogeneous in design (few custom blocks) since 
they can be packaged at high bandwidth with more custom logic.  However, fast on-
chip cores may be useful to execute control logic and to provide high speed 
communications with host processors to implement, for example, memory bus 
coherency protocols. 

  FPGAs will excel at pattern recognition tasks, making them invaluable to analyzing 
large and ambiguous data sets, including video and sensor data.  They will likely play 
an important role in implementing neuromorphic computers and other dynamic 
learning-based systems. 



Integration – communications and 
networking 
  The drivers will be principally price-performance and low latency. 
  FPGAs will handle very large volumes of traffic in routing and switching 

applications, perhaps making ASICs and custom network processors 
obsolete (depending on how far we can continue to push network 
bandwidth) 

  FPGAs will provide higher level functions at wire speed such as cyber-
security defense and programmable mediations (e.g. filters, transforms, 
cryptography) for intra-enterprise and cross-enterprise communications.  
Wire speed functions will be programmed in a high level language (see next 
section). 

  FPGAs will be commonly employed in sensor networks and in sensor 
devices to provide first level analysis and filtering of massive real-world 
streaming data.  In these applications, SoC integration with general-purpose 
cores may be needed (depending on the device sophistication) to reduce 
device cost and power consumption. 



Programmability – explicit 
  HDL design will be as common in 2032 as assembly language programming is in 

2012 
  Multiple programming languages will be effective for programming FPGAs, with no 

need to understand the underlying hardware or even to know it is present 
  Existing languages, and new ones that don’t yet exist, will incorporate standard extensions 

for parallelism allowing the programmer to build algorithms which can be effectively 
mapped to FPGA 

  Optimizing compilers producing HDL code or even lower level FPGA configurations will 
be mature by 2032, allowing the programmer to confidently ignore low level details 

  It will continue to be a challenge to achieve portability of FPGA configurations (not HDL) 
across vendors and even across multiple FPGA parts from the same vendor.   “Fat binaries” 
will be needed unless such portability can be achieved (e.g. through some kind of template 
architecture) 

  Large libraries of portable, optimized, FPGA-accelerated functions will be widely 
available and usable from multiple languages 
  Linear algebra, cryptography, data compression, data transforms, statistical analyses, string 

handling, etc. 
  Portability either by hand coding or, more likely, by using one of the languages capable of 

explicitly encoding device-independent parallelism 



Programmability - implicit 
  Compilers will be capable of extracting parallelism automatically from 

existing code, targeting both conventional multiprocessors and FPGAs 
  Automatic parallelization will continue to be challenging for classical imperative 

languages but will be much more powerful for functional and concurrent 
languages, which will increase in popularity in the next 20 years 

  Compilers will be able to parallelize and target FPGAs both statically and 
dynamically (concurrent with program execution).  Even binary translation 
systems will be able to automatically exploit FPGA, accelerating legacy software 
execution.  Dynamic systems will be hindered by continued challenges in high 
speed synthesis so should benefit from template-based architectures.  

  Runtime systems will be advanced enough to make good decisions about the 
mapping of code to different system components, accounting for 
communications and data movement overhead 

  Commonly employed “middleware” (higher level programming models and 
runtime systems) will be designed to exploit FPGA “out of the box” 
  Programming models with substantial implied parallelism such as rule-based 

systems, process flows, streaming data, relational query, map-reduce, and web 
services will all be implemented with runtime systems and compilers which 
automatically exploit FPGA 



Programmability - debugging 
  Debugging at a high level language source level will improve but continue to 

be a challenge in 2032 
  Advances in both simulation and chip-level monitoring will enable incremental 

improvements in HDL-level and signal-level debugging 
  However, mapping of generated FPGA configurations to the source level will be 

a large challenge, making the visualization of execution in a high level language 
debugger incomplete and error-prone. 

  The history of failures in debuggers for optimized code from conventional 
compilers is a good guide to the future with FPGAs programmed at a high level 

  Performance analysis will be solved in part by the ability to automatically 
construct and execute accurate models 
  Components of the application which have been selected by the compiler or 

programmer to execute on FPGA will be simulated in a performance-accurate 
manner and execute at full speed on general-purpose parallel systems (developer 
laptops will have hundreds of cores available in this timeframe, assuming they 
aren’t all working in the cloud by this time) 

  Performance testing and analysis across multiple, diverse devices can be achieved 
  Feedback from performance models will provide additional information for 

compilers when used in an iterative, feedback-directed fashion 



Virtualization 
  FPGAs will be commonly employed in cloud infrastructure 

  Dependent on high level, device-independent programming models becoming prevalent 

  Dependent on low cost integration  

  FPGA resources will be dynamically sharable across multiple virtual machines (in IaaS) and 
tenants (in SaaS) 
  FPGAs will need to support fast & flexible partial reconfiguration 

  “system level” FPGA resources must be protected from “user level” logic running either on the host 
processors or on the FPGA - akin to supervisor mode on general purpose processors – i.e. it is never 
possible to “crash” the system components by loading new user logic 

  Fast swapping of state must be enabled, essentially providing virtual memory management for “user 
level” FPGA logic 

  It must be possible to map logic efficiently across multiple FPGAs, integrated closely (e.g. in a 3D 
package), to avoid inefficiencies in mapping resources to dynamically changing workload 

  “user level” resources must be isolated from other,  potentially malicious logic running on the same chip 
or cluster – akin to process-level isolation in current operating systems 

  FPGA management systems (“hypervisor” for reconfigurable logic) must implement a set of policies 
designed to ensure fairness, reliable execution and quality of service optimization.  It must not be 
possible for specific users to monopolize resources either intentionally (DoS) or unintentionally.   

  FPGA hypervisors must support both batch and time-sliced scheduling.  Hardware support may be 
warranted for time-slicing. 


