
Michael J. Flynn

 Maxeler Technologies and Stanford University

Using FPGAs for HPC* acceleration:

now and in 20 years

*High Performance Computing

for large “warehouse” apps.

Where we are now….

• Assumes host CPU + FPGA accelerator

• Application consists of two parts

– Essential (high usage, >99%) part (kernel(s))

– Bulk part (<1% dynamic activity)

• Essential part is executed on accelerator; Bulk part
on host

Accelerator HW model

3

• Create a static DFM (unroll loops, etc.); generally the
goal is throughput not latency.

• Create a fully synchronous DFM synchronized to
multiple memory channels. The time through the
DFM is always the same.

• Stream computations across the long DFM array,
creating MISD or pipelined parallelism.

• If silicon area and pin BW allow, create multiple
copies of the DFM (as with SIMD or vector
computations).

• Iterate on the DFM aspect ratio to optimize speedup.

Acceleration with Static, Synchronous,

Streaming DFMs

4

• Create a fully synchronous data flow machine
synchronized to multiple memory channels, then
stream computations across a long array

Acceleration with Static, Synchronous,

Streaming DFMs

FPGA based DFM

Data from node

memory

Computation #1

Results to

memory

Computation #2

DDR3 Buffer

intermediate results

5

PCIe accelerator card

CPUs vs. Stream Processing

6

JAVA based DF graph description.
Automatic generation /

compilation creating DFM
buffer synchronized

7

Initial Data flow graph as
generated by compiler

4866 nodes; about 250x100

8

Each node represents
a line of JAVA code with
area time parameters, so
that the designer can change
the aspect ratio to improve
pin BW, area usage and
speedup

Achieved Computational Speedup for the entire

application (not just kernel) compared to Intel server

RTM with Chevron

VTI 19x and TTI 25x
Sparse Matrix

20-40x

Seismic Trace Processing

24x

Lattice Boltzman

Fluid Flow 30x
Conjugate Gradient Opt 26x Credit 32x and Rates 26x

624

624

9

• Multi core approach lacks robustness in streaming hardware
(spanning area, time, power)

• Multi core lacks robust parallel software methodology and
tools

• FPGAs form an unlikely basis for acceleration

• Success comes about from their flexibility in matching the DFG
with a synchronous DFM and streaming data through and
shear size > 1 million cells

• Effort and support tools (JAVA DFM compiler, memory
choreographing SW) provide significant application speedup

So how can emulation (FPGA) be better

than high performance x86 processor(s)?

10

And 20 years from now?

• Role of FPGAs? depends on competing technologies
(multi core, etc..)

• All technologies will be array based; impossible to
manage / design /validate singular designs

• All technologies severely limited by software that
enable applications to exploit parallelism. Need a
rethinking of

– Architecture

– Compilers

– User interface

HPC plus 20 years

12

• It’s difficult to see where today’s multi core goes.
Limited by fixed isp, fixed interconnect, fixed
memory access protocols

• Frequency (limited by power density) remains
relatively static, 2-4 x

• Why 1000 or 10,000 cores per die (and 90% devoted
to cache), when memory is already the bottleneck.

• A more generalized, flexible array technology?

• Programming model will evolve away from current
(sequentially oriented) models.

Multi Core plus 20

13

• Computational density increases by 1000 to 10,000
(technology, circuitry, coarser grain)

• The FPGA with 2 personalities: fine and arithmetic (HPC)

• Frequency (again) relatively static

• Software DFM oriented; more/better application
mapping tools

• Multi channel choreographed memory access now, later
memory on die, customizable memory interconnects

• For coarser grain array technology, a convergence with
flexible multi core? What is the grain in coarse grain?

FPGA for HPC plus 20

14

BUT, what about place and route?

Chin and Wilton, “Modeling …FPGA… Place and Route Runtime, FPL 09

The more clusters to
place and route, the
more the runtime.
Data from 09, no
better now

Runtime constraints for P&R time

15

• Over the decade 1999-2009 the literature seems to
indicate that P&R time has increased by at least 10x,
even as the P&R execution HW became 10x faster.

• HPC applications need to deal with large number of
clusters (DFG nodes), now at 10 hour P&R.

• And what about 20 years from now? Months to do a P&R
for HPC? One would think that P&R is the stepchild
application for HPC. Why not vendor P&R HPC cloud?

• Larger issue is application mapping (source to run) User
concerns: time to implement and time to execute, not
circuitry or silicon

16

BUT, what about the user?

• In HPC the success of FPGA acceleration points to the
weakness of evolutionary approaches to parallel
processing: hardware (multi core) and software (C++,
etc.), at least for these HPC applications.

• The automation of acceleration is still early on; still
required: tools, methodology for writing apps.,
analysis methodology and (probably) a new
hardware basis (coarser grain, less P&R time).

Comments

17

• There’s a role for FPGAs in HPC if underlying software
problems can be solved.

• In HPC the parallel approach demands rethinking
algorithms, programming approach and environment
and underlying hardware.

• There’s a lot of research ahead to effectively create
parallel translation and array based technology.

Conclusions

18

