# FPGAs in 2032: Challenges and Opportunities in the next 20 years

**Convergence of Programmable Solutions** 

Misha Burich

Senior VP & CTO

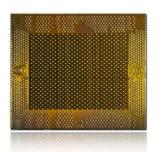
**Altera Corporation** 

February 22, 2012



## **Tempting Topic Not Discussed Here**

- Predictions from 1992 about 2012
  - Accurate ones
  - Hilarious ones
  - Probably more accurate than now predicting 2032.


1990s 2010s

Glue Logic



Flex 6000 3µ process

Heterogeneous Capabilities



Stratix I 130nm process

High Integration/ Bandwidth

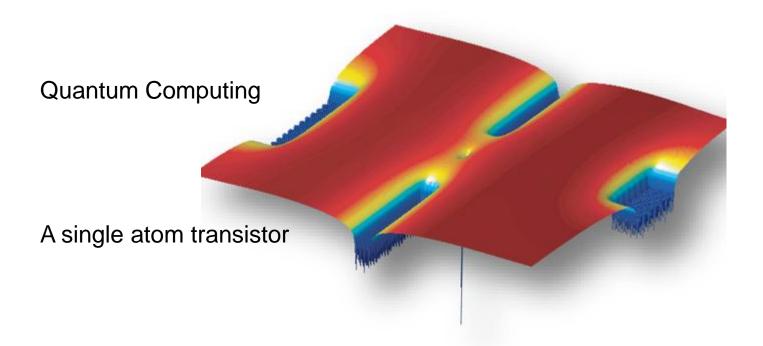


40nm process

Hardened Subsystems



28nm process


Cortex-A9 MPCore



SoC FPGA 28nm process



#### **Tempting Topic Not Discussed Here**

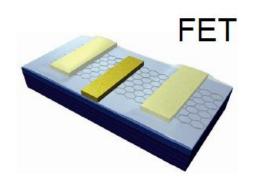


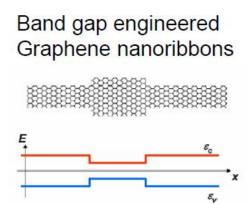
A controllable transistor engineered from a single phosphorus atom has been developed by researchers at the University of New South Wales, Purdue University and the University of Melbourne. The atom, shown here in the center of an image from a computer model, sits in a channel in a silicon crystal. (Credit: Purdue University)



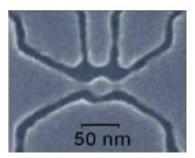
## **Tempting Topic Not Discussed Here**

#### DNA computing


 Scientists at IBM are experimenting with using DNA molecules as a way to create tiny circuits that could form the basis of smaller, more powerful computer chips.

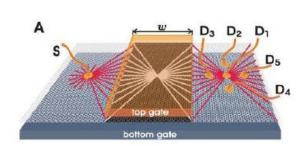






## **Tempting Topics Not Discussed Here**

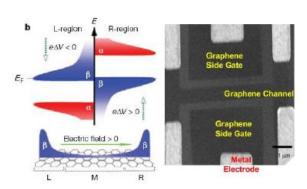
#### **Conventional Devices**






Graphene quantum dot

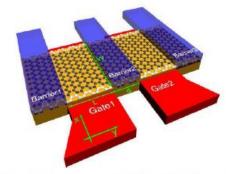



(Manchester group)

#### **Nonconventional Devices**



Graphene Veselago lense


Cheianov et al. Science (07)



#### **Graphene Spintronics**

Son et al. Nature (07)

P. Kim – Columbia U.



Graphene pseudospintronics

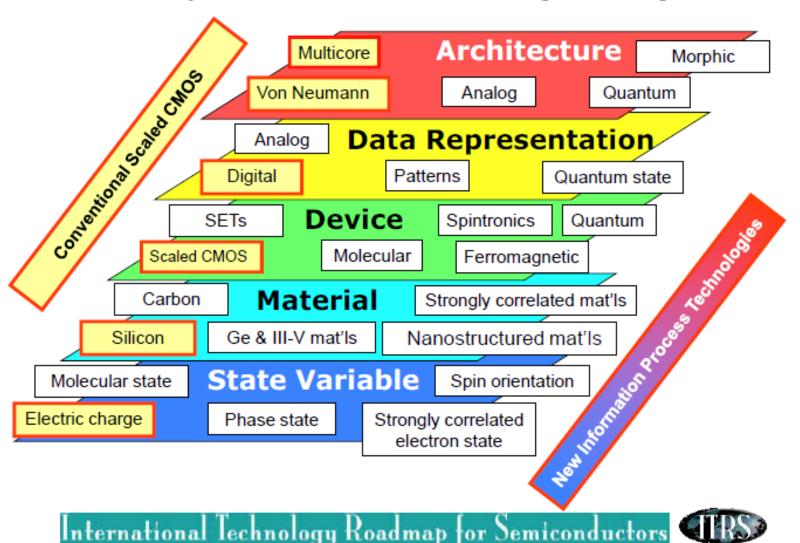
Trauzettel et al. Nature Phys. (07)



#### **Tempting Topics Not Discussed Here**

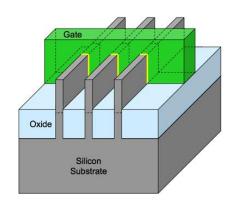
- Wonderful applications of technology in 2032
  - 6 billion connected people
  - 100 billion connected devices
    - Internet of Things
  - Wearable electronics
  - Genome informatics and personalized medicine
  - Intelligent robots and machines
    - Singularity
  - Many others...



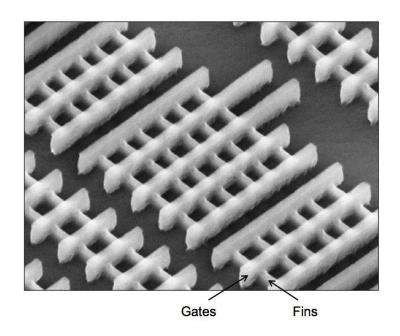

# **Topics Discussed Today**

- Convergence of programmable platforms
- A need for programming models, languages and compilers for converged programmable platforms
- Summary




## ITRS Roadmap Ends In 2026

A Taxonomy for Nano Information Processing Technologies






#### Intel 22nm FinFET Announced May 2011



|                |       |       | A COMMON OF STREET |       |       |
|----------------|-------|-------|--------------------|-------|-------|
| Process Name   | P1266 | P1268 | P1270              | P1272 | P1274 |
| Lithography    | 45 nm | 32 nm | 22 nm              | 14 nm | 10 nm |
| 1st Production | 2007  | 2009  | 2011               | 2013  | 2015  |



#### Claimed benefits relative to 32nm:

- 18% faster at 1.0V, 37% faster at 0.7V
- 50% lower power at same performance
- 2-3% higher cost than planar process



#### "More Moore" Projections

| Year               | 2012 | 2014 | 2017 | 2020 | 2023 | 2026  | 2029  | 2032  |
|--------------------|------|------|------|------|------|-------|-------|-------|
| Node               | 20nm | 14nm | 10nm | 7nm  | 5nm  | 3.5nm | 2.5nm | 1.8nm |
| # FETs per die (B) | 8    | 14   | 28   | 56   | 113  | 222   | 453   | 887   |
| M1 1/2 pitch (nm)  | 32   | 24   | 16.9 | 11.9 | 8.4  | 6     | 4.2   | 3     |
| Lgate (nm)         | 22   | 18   | 14   | 10.6 | 8.1  | 5.9   | 4.2   | 3     |

<sup>\*</sup> Normalized to 20nm

Sources: ITRS 2010, ITRS 2011, Altera projections beyond 2026



## 2032 Process Technology Extrapolation

- "More Moore" scaling produces:
  - ~1 Trillion transistors per die, >100X of 20nm technology
  - 250X increase in throughput compared to 20nm
  - Minimum features of ~13X silicon atomic spacing
  - Faster transistors, but much slower interconnect
- Many significant challenges exist
  - New materials and device structures are necessary
    - Long term options: Tunnel FET, nano wires, graphene, non-CMOS devices
- Slower scaling combined with 3D is an attractive alternative
- More Than Moore can achieve same transistor count as More Moore



#### **IMEC 3D System Integration Program**

**Logic IDM** 









**FABLESS** 

**O**LLALCONNO!



















**3D PROGRAM** 









#### **MATERIAL SUPPLIERS**



Hitachi Chemical





**EDA** 

SYNOPSYS°

cādence°











**EQUIPMENT SUPPLIERS** 

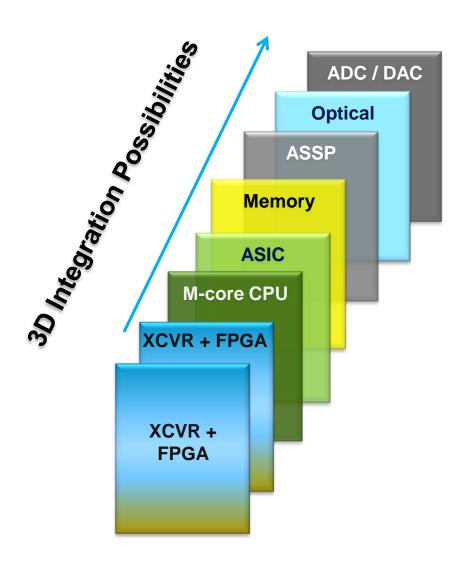


**TOKYO ELECTRON** 





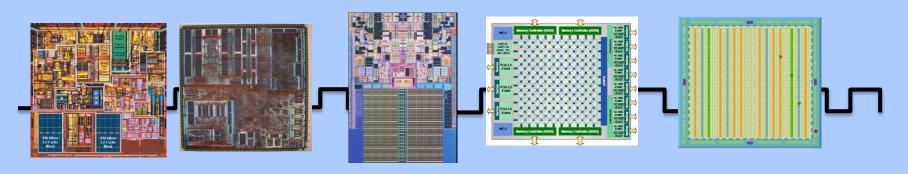








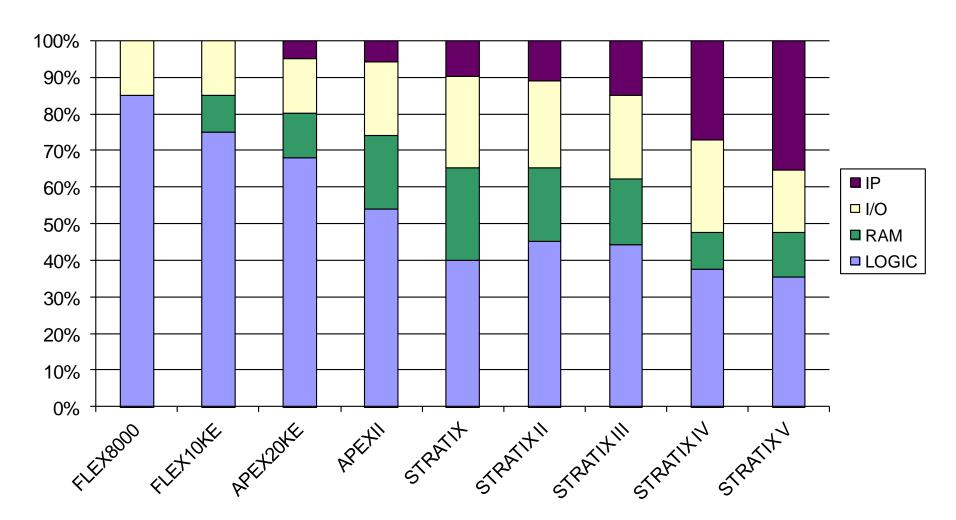

© 2012 Aitera Corporation— FPGA 2012 Conference Pane


#### 3D Integration Technology Opportunities





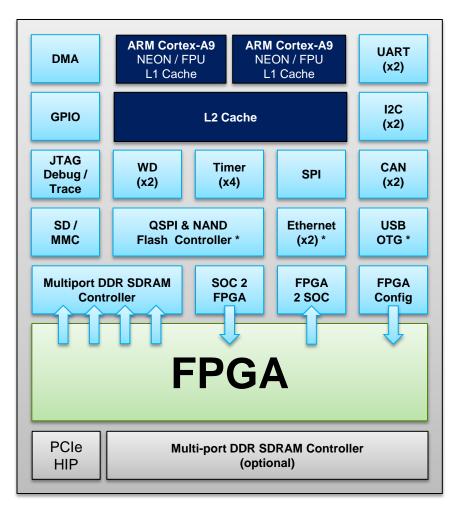
## **Programmable Platforms in 2012**


Moore's law has enabled a range high density programmable platforms



| CPUs         | DSPs | Multi-Cores                                    | Many-Core Arrays                                               | FPGAs                                                |
|--------------|------|------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|
| Single Cores | 5    | Multi-Cores<br>Coarse-Grained<br>CPUs and DSPs | Coarse-Grained<br>Massively<br>Parallel<br>Processor<br>Arrays | Fine-Grained Massively Parallel Heterogeneous Arrays |

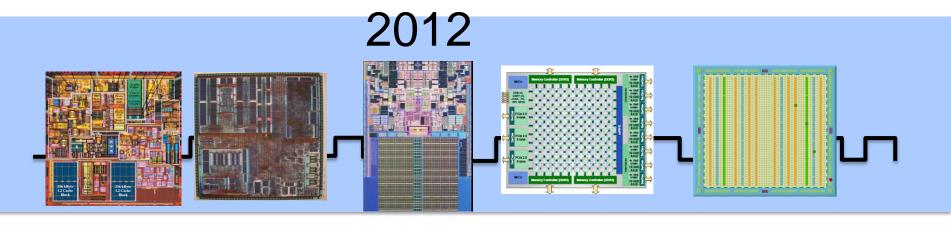



# **Augmenting Fine-Grained Fabric with Coarse-Grained Programmable Functions in FPGAs**

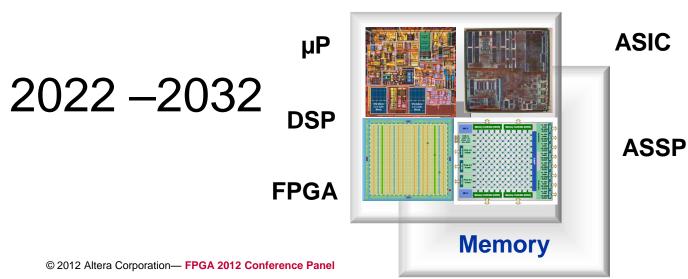




# **Emerging SoC FPGAs**


- Processor
  - Dual ARM Cortex-A9
- SDRAM Controller, Peripherals
- Other Hard IP
  - Serial protocols, memory interfaces
- FPGA programmable fabric
  - Multiple density options
- Programming model: C/C++ for ARM
  - Common operating systems
  - APIs for hardware accelerators developed in HDL (Verilog, VHDL, System Verilog), or C/C++ by using high-level-synthesis
  - OpenCL

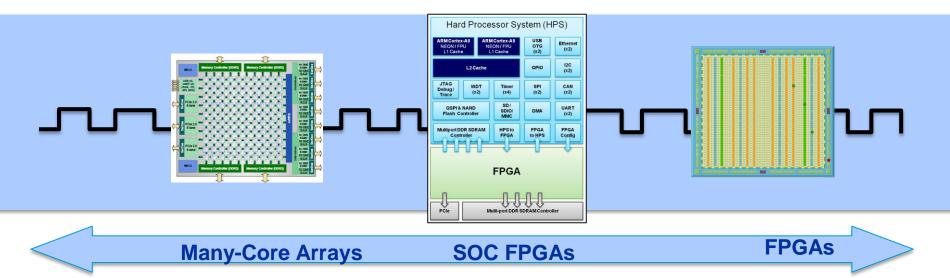



\* Integrated DMA logic



# **Programmable Convergence in 2022-2032**




 From 2022 to 2032 all SoCs will be programmable, a combination of today's architectures



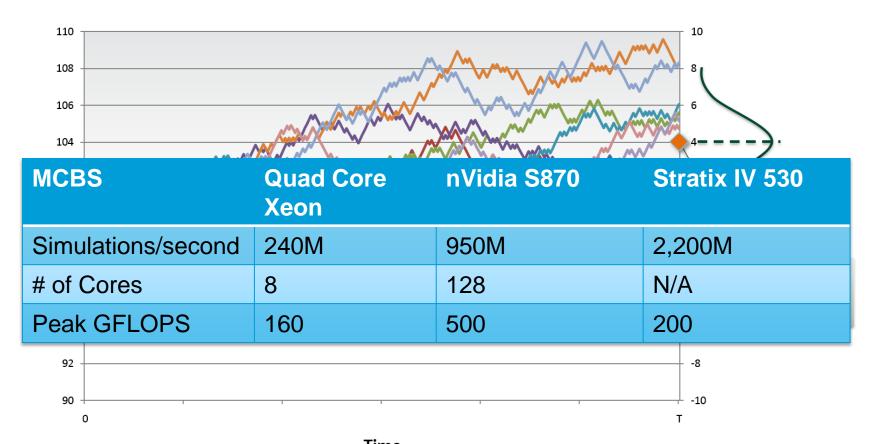


# **Emerging Parallel Programming Models**

- Parallel programming is still evolving for many-cores
- OpenCL emerging for many-cores, FPGAs and SOC FPGAs



- CUDA, OpenCL for GPUs,
- Versions of C, C++ and bare-metal programming for many-cores
- OpenCL parallel programming for FPGAs and SOC FPGAs
- C/C++ for ARM with OpenCL for implementing and managing hardware accelerators




#### **OpenCL Compiler for FPGAs**

#### **Host Program**

```
main()
  kernel void
sum( global const float *a,
global const float *b,
global float *answer)
                                                                                 Load
                                                                  Load
                                                                         Load
                                           Load
                                                  Load
                                                          Load
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
                                                                                             PCle
int xid = get_global_id(0);
answer[xid] = a[xid] + b[xid];
                                                                             Store
                                              Store
                                                              Store
                                                                                 Load
                                           Load
                                                                          Load
                                                  Load
                                                          Load
                                                                  Load
                                                                                             DDR*
                                                                             Store
                                              Store
                                                              Store
```

## **Finance: Equity Derivative Pricing**



Monte Carlo simulation of all possible paths for the underlying equity value



# **Summary**

- Key directions to 2022 and 2032
  - Convergence of programmable platforms
    - Heterogeneous architectures
  - Programming models and compilers for the converged programmable platforms



