

THE BEST PATH FROM IDEAS TO PRODUCTION SILICON ®

THE BEST PATH FROM IDEAS TO PRODUCTION SILICON ®

Programmable logic devices in 2032?

Steve Teig

CTO, Tabula

February 22, 2012

1

Prediction is very difficult…

2

 Niels Bohr (1885-1962)

… especially about the future.

 Some (e.g., Ray Kurzweil) believe that all technologies accelerate exponentially

– Is that true?

– Do deep ideas advance at an exponential rate, too?

 1992 technology

– IBM introduces first ThinkPad laptop

– Berners-Lee introduces the World Wide Web (1991)

– Miley Cyrus is born

20 years is an eternity in technology

1990’s 2000’s

SMS, Web browsers (1993) Segway (2001)

MP3 files (1994) Satellite radio (2001)

GPS (1994) Wireless headset (2002)

Amazon.com (1994/5) Deep-fried Twinkies (2002)

DVDs (1995) Human genome sequenced (2003)

Consumer digital camera (1995) Skype (2003)

HDTV (1996) YouTube (2005)

Google (1998) iPhone (2007)

Viagra (1998) Memristor (2008)

Blackberry (1999) iPad (2010)

 Some things that matter a lot, …

– Programming model

– Debugging / verification

– Throughput

– Power

 … some things that matter a lot less, …

– Materials

– Physical construction

 … and some other things that matter a lot, but are not in today’s presentation

– Architecture: e.g., Spacetime vs. single-program (i.e., 2-D) PLDs

– Model of time: e.g., synchrony vs. asynchrony, discrete vs. continuous time

– Computational elements: e.g., are LUTs best?, does floating point matter?, etc.…

Selected aspects of future PLDs – my view

4

Human efficiency

Machine efficiency

Programming and software

5

Language Verilog C Pure functional:

e.g., Haskell

Abstraction level Very low Very low Medium-to-high

Data movement Explicit Explicit Implicit

Safety Very error-prone Very error-prone High

Support for

concurrency /

parallelism

Explicit and

operational, hard

to reason about

None (threads?) Medium

Computational

model

RTL Von Neumann Lambda calculus

 Spacetime?

Scalability Very poor Poor Very good

 Serial vs. parallel is the wrong dichotomy for the programming abstraction

– Needlessly operational

– Presumes a needless simultaneity

 Temporally dependent vs. temporally independent

– Dependent: A must precede B

– Independent: Don’t care whether A precedes B

 Temporal dependency can almost always be determined automatically…

– E.g., B’s input depends on A’s output

 …if destructive write is forbidden (or sufficiently sequestered)

– E.g., in “pure” languages such as Haskell, in which “a = a + 1” is meaningless

 Only I/O must explicitly specify dependency

 Pure computations can be automatically scheduled by the compiler

– Can automatically exploit idle hardware to improve throughput and/or to reduce power

 Pure computations compose  are easier to reason about  scale

Serial / parallel computation

6

 Essentially all large software has bugs – lots of them

 10-15 Mg designs (~1 M LUTs) ≈ small ASSPs ≈ very small programs

 Debug and verification already dominate ASSP design

 As we scale 100-1000x, verification will be everything

 Current debug technologies are a good first step… but still primitive

– FPGA debuggers require design modification, recompile, difficult (impossible?) timing

closure, significant extra real estate, very low-level view of design

 Need observability of every value in the user’s program (à la simulation), but…

 …on the device, at speed, non-intrusively

 Need abstraction of implementation – views – to match designer’s

(programmer’s!) mental model

Debug, observability, and verification

7

 Bandwidth needs are likely to increase rapidly for quite a while

– Video, 3D video, holograms, 3D avatars, who knows?

 Processing inside and to/from wireless devices will likely continue to increase

rapidly, too

 Massive parallelism is one piece of the puzzle… but is not nearly enough

 High-speed serial processing (4+ GHz?) must not be ignored

– Amdahl’s Law

– Most computations are temporally incompressible, although…

– Already have throughput at 2 GHz

 Ultra-high-bandwidth memory is an even more vital piece of the puzzle

 So is low memory latency!

 So is very high memory capacity

Throughput: the need for speed

8

 Not just 80 GB / sec (off-device) or 2-3 TB / sec (on-device) sustained

 3-5 TB / sec throughput from off-chip: e.g., 10K TSVs @ 4 GHz

– A killer app for chip stacking: ½ of (2012) Wikipedia per second

 100+ TB / sec throughput on-chip with 1 ns latency

– Necessary for ~25 TFLOPS sustained throughput

– ~1/3 of (2012-vintage) Library of Congress holdings… per second

 Since on-chip throughput >> off-chip throughput, must have lots of on-chip RAM

 At least 150 MB but possibly >1 GB

 Since on-chip throughput >> off-chip throughput, on-chip computation is cheap

– E.g., extreme “data compression”

 Machine learning is fundamental

 E.g., transmit (derived) models and operations vs. explicit pixels/voxels

Performance: from memory  machine learning

9

 GPU: ~550 GFLOPS at ~250 W = ~2 GFLOPS / W

– Sustained, double-precision

 At least 100 GFLOPS / W in the next 20 years

– 20 GFLOPS / W should happen in the next few years

 Can we drastically improve power efficiency?

 What if we compromise on exactitude most of the time?

– One wrong pixel per month… or week… or minute … or second?

– Occasional retransmission (or re-reception) of a network packet

 Assertion: if power efficiency is what matters most, we need to trade exactitude

 Heisenberg-like principle characterizing intrinsic energy cost of precision

Power efficiency

10

 Bits cost power  exactitude costs power

 Despite reversible computing (theory), practical computing appears to require some

energy per bit

– E.g., to mitigate thermal noise, SEUs, etc.

 Biological systems achieve energy efficiency by requiring exactitude only rarely

– E.g., DNA transcription

 Everything else is approximate

– Random motion of molecules in cytoplasm, blood cells in blood

– Walking motion, visual processing, thought…

 For really low-power computation, need to use exactitude much more selectively

 ECC? High-precision arithmetic? Triplicated logic? – nope!

– At least, not pervasively

 Long-term future of programmable devices depends on power-exactitude tradeoff

Power reduction via exactitude reduction

11

 Prediction 20 years into the future is pretty hopeless

 That said, my current thoughts include the following:

 Programming model will be a pure (or mostly pure) functional language

– Won’t be RTL or C or imperative or object-oriented

 Debugger/verification technology will advance enormously

– Full observability at speed will be the norm

 Performance depends on memory throughput, latency, and on-chip capacity

 When off-chip memory is the bottleneck, data compression is crucial

– Sophisticated machine learning  approximate models vs. raw data

 Power efficiency  compromise of exactitude

– Heisenbergian principle of intrinsic energy cost per bit of exactitude

– Approximate almost everything; pay energy for more exactitude only occasionally

 Virtualization provides infinite capacity at the cost of latency

 PLDs have been surprisingly stagnant over the last 20 years

 Let’s do a lot better in the next 20 years

Summary

12

