Word-length optimization beyond straight-
line code

David Boland
and George A. Constantinides

What is word-length optimization?

Function dotProduct(x)

output = 0;

fori = 1;i <= 10000;7i + + do
prod = z[i] x x[i]:
output = output+prod;

end for

return{output)

What is word-length optimization?

Function dotProduct(x)

output = 0;

for: = 1;7 <= 10000;2 + + do
prod = z[i] x x[i]:
output = output+prod;

end for

return{output)

What is word-length optimization?

Known input bounds: |X]| < 1
Design criteria: Relative error < 1e®
Initial design in IEEE double precision. Is this overkill?

What is word-length optimization?

Known input bounds: |X]| < 1
Design criteria: Relative error < 1e®
Initial design in IEEE double precision. Is this overkill?

Word-length optimization tools find the minimum
precision necessary to guarantee design criteria is met

A year ago at FPGA 2012

» We presented our latest word-length optimization
framework™:

Execution time linear in number of operations

Bounds approaching quality of algorithms whose execution time
grows exponentially in the number of operations.

» A question was raised:

“Can your approach deal with loopsr”

*David Boland and George A. Constantinides, A Scalable Approach for Automated Precision Analysis, Proc. ACM/SIGDA Int. Conf. on
Field-Programmable Gate Arrays, pp.185-194, 201 2.

Can your approach deal with loops?

Vector _sumia);

output = 0;

fori:=1;i <=3;1+ + do
output = output+a|il;

end for

» Unroll "for" loop:

The error seen at the output
of these architectures are
equivalent.
» But how do you deal with
"while" loops?

How much do you unroll?

Counter - RAM [l
r output=
reset
alﬂ a[2] a[3]
+] + L output
0 — —p —L»

A toy example

Function RadioActiveDecay (fixed4bit x, fixeddbit y)
B N /I X,y € [Vie: 1916]
5 . int8bit years;
X - X— X a=1;
R while a > y do
o g N a=a x T
b y T years + 4
[end while
Counter X return(years)
=T > year
start i - eTn
clk

How many bits are needed for the
variable a?

Um...5 bits?
» If x=0.9375, y=0.125

Function RadioActiveDecay (fixed4bit x, fixeddbit y)
Hx,y € Ve s

intsbit vears;
i = 1
while a > y do

ia=ia = I

years 4+ 4

end while

return(years)
Loop Iteration | Years | a (before rounding) | a (after rounding)
0 0 I 1 -
1 | 0.9375 0.9375
2 2 0.87890625 0.875
3 3 0.8203125 0.8125
4 4 0. 76171875 0.75
5 5 0.703125 0. 71875
19 19 0.29296875 Roundgd up
20 20 0.263671875 to same value
21 21 0.234375 5

oop will run forever

Um...5 bits?

For the accelerator to be useful, it must
terminate at some point:

Choose the fewest number of bits required to
ensure termination

So how do you deal with "while" loops?

» Borrowed some i1deas from the software verification
community regarding loop termination

» Extended these ideas to:
Incorporate finite precision arithmetic affects

Deal with non-linear operations

Demonstrate its use for hardware design

Proving loop termination

int 1,];

scanf("%d".&1);
scanf("%d".&)

while (i > 0)&& (7 > 0) do

, i— Loop variables after a
Loop variables are: j+1 loop iteration are:
l,]

nd while I'=1-
I:Eturn{';l) j':j"'l

» We analyse loop variables before and after a single loop
iteration

» Loop updates must ensure the loop variables always move
towards the loop exit condition

Proving loop termination

1.

Create a ranking function f(i,j,...) that maps every
potential state within the loop to a positive real number.

Show that after every loop iteration, this function always
decreases by more than some fixed

amount € >0 | ze:

fG',5,..)< f(i,5,...) —¢€

Eventually the loop transition statement will cause:

F(@' 5) <0
this corresponds to the loop terminating.

Proving loop termination example

1. Create a ranking function
that maps every potential
state within the loop to a
positive real number.

f(i) = 100 — ¢
2. Show:
fG',5,..)< f(i,5,...) —¢€
where €>0
f(i) = 100 — ¢
f(@')=100— (i +1) =99 —i
then 99 — i < 100 — i — € if
D<e<1

nt 1;

scanf("%d",&1):;

while (z < 100) do
t =1+ 1;

end while

return(z)

Remaining questions?

» How to choose the ranking function f(%,7,...)?
We describe a search procedure for several candidate ranking functions in

the paper.
» If f(i,j,...) can be any polynomial function, is proving that:
»f(ilaj/w") < f(zaja) T
nontrivial? | |
Yes...but if we re-write equation as
0< f(i,5,...)— (,],.) —€
previous work* can be used to bound the right-hand polynomial

If the lower bound of right-hand polynomial > 0, then we have proved the
ranking function holds

» How to prove termination in finite precision arithmetic?

*David Boland and George A. Constantinides, A Scalable Approach for Automated Precision Analysis, Proc. ACM/SIGDA Int. Conf. on

Field-Programmable Gate Arrays, pp.185-194, 2012.
9

How to prove termination in finite precision arithmetic?

» Create polynomial bounding the worst-case output range
after any operation @ € {+, —, x, /}
» For n-bit fixed point:)
fix(xr Oy)=c0y+4 6] <277
» For floating point with n-bit mantissa:
float(z © y) = (z © y)(1 + 9)

» Show that even after worst-case rounding,
Fx(i'), fix('),-..) < f(i,j,...)—¢ o

f(float(:"), float(5'),...) < f(i,5,...) — €
still holds

Proving loop termination for RadioActiveDecay

Function RadioActveDecay (fxed4bit =, fixed4bit i)
N x, v £ [Vis; 5he]

intBhit years:

n=1;

while o > y do

=4 x0T

years + +:
cnd while
refurni years)

1. Create a ranking function that maps every potential state within
the loop to a positive real number.

f(a,years) =a
2. Show: f(fix(a'), fix(years')) < f(a,years) — ¢
where €>0

since f(fix(a"), fix(years')) =a x x + 6
f(la,years) = a
Terminates if aXrT+o<a—c¢€

of O0<a—(axzx+7) —c¢

Lower bound for a—(axz+4)—¢

0.02 : . | _ _ .
o e
_0.02 Lower bound > 0 when 8 bits are used
&
——0.04 Program terminates when 8 bits are used
=
J
= _0.06
5
2
—-0.08
-0.1
-0.12
1% 4 5 6 7 8 E 10

Number of fractional bits for a

Potential benefits for FP(GA-based accelerators.

RadioActiveDecay example

Int8 years = (;
fixed?bit curr Amount = 1;
while currAmount = limit do
years = years+1;
currAmount = currAmount x decayRate;
end while
return(years);

Euclid's method to compute GCD

2: /f where a lies in the interval [(0.1; 1000], b lies in the inter-
val [0.1; 100] and @ = b.
3 Function GCD{a. &)
4: while & = 0.1 do
5 o=
[b=a— |a/blb
T a=ue
#: end while
O: return{a)
13

Newton's method to compute
the square root of a number

Euler's method to solve differential equations

a € [0 Nandb €[00 1].c € [90; 100, d € [0 0

m € [0 1) and 2 € [107%; 1]%
1: Function Euleria. b, ¢ d, Win, 1, .l,la-':l

2 Woarr = Hin

3 while a = & do

4 =105

5 do

i g = Yeurr + 0 2 e+ d H gowes)

T id = Uenrr + i.l'.l ks |:I'+ i Yoeurr |
#: _l|"=--——"__.|'.-+.:.'.-'.|_|.-.:-|'

G ¥l = Yeurr + i.'l'l = e+ dE Yeuwr) + 5
{13 T =% — 3o

11: h=zh

12: while [+ = g s bolhe = i)

13: fourr = 1;

14: =+ 2= h
15: end while
16 retwmie)

-

4

2: {f where i lies in the interval [(; 100] and 5 = 1 = 10"
3 Function Mewion_ SOET(z)

frin=1lL1=uk=10

5 while [24010 — 2| = ndo

fr: u-,-_'_,[u+|13|

7 k=41

2: end while

O: returnil)

Potential benefits for FPGA-based accelerators.

Newton's method to compute
RadioActiveDecay example the square root of a number

Euclid's method to compute GCD

Potential benefits for FPGA-based accelerators.

RadioActiveDecay example
bits for curr Amount | Slices | DSPs | Frequency (MHz)

12 13 l 275
16 16 l 273
0 17 2 210

For fixed point examples, our approach can
pick smallest, fastest architecture &
guarantee it will terminate

Euclid's method to compute GCD
fractional bits | Slices | DSPs | Frequency (MHz)

——

i 203 1 220
8 262 1 190
9 289 1 195
10 2l4 2 180

Potential benefits for FPGA-based accelerators.

Newton's method to compute
the square root of a number

Method Precision (# bits) Slices Frequency (MHz)
Our Approach 2 1236 | 490

| IEEESinglePrecision | 4 999 S0
[EEE Double Precision | 53 2667 | 330

For floating point examples, our approach
can pick smallest, fastest architecture &
guarantee it will terminate

Euler's method to solve differential equations

Method Precision (# bits) | Slices | Frequency (MHz)
(hur Approach 9,17 418 | 350

| [EEE Single Precision | 24~ [U
IEEE Double Precision | 53 230 | 480

Potential benefits for FPGA-based accelerators.

Note a single precision architecture Newton's method to compute
wouldn't terminate -> it wouldn't work! | the square root of a number

Frequency (MHz)

Euler's method to solve differential equations

Method Precision (# bits) | Slices | Frequency (MHz)
(hur Approach 9,17 418 | 350

| [EEE Single Precision | 24~ [U
IEEE Double Precision | 53 230 | 480

Potential benefits for FPGA-based accelerators.

Newton's method to compute
the square root of a number

Method Precision (# bits) Slices Frequency (MHz)
Our Approach 2 49)

| IEEESinglePrecision | 4 s
[EEE Double Precision | 53 10

Euler's method to solve differential equations

Method Precision (# bits) | Slices | Frequency (MHz)
| Ou Approach | 37 S
IEEE Single Precision | 24 490

[EEE Double Precision | 53 480
Savings of 50 % or 80 % over IEEE double
precision arithmetic

Can your approach deal with loops?

» Loop termination is provably undecidable in the general case

» Nevertheless

Described a technique to choose precision for code containing while loops
Incorporate finite precision models into a termination argument.
Use precision analysis techniques to validate such a termination argument.

Scalable
Only analyses the loop body for a single iteration of the loop

Our technique can prove loop termination in finite precision for
examples where:

Loop body consists any arithmetic operations

Loop exit conditions are linear and conjunctive

Beyond the capabilities of current tools from the software verification
community

Demonstrated its use for word-length optimization of basic hardware
accelerators

