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Motivation 

• Difficult to manufacture FPGAs with no faults 

• FPGAs may “wear out” (i.e. permanent faults) 

– Electromigration, Hot Carrier Injection 

– Time-dependent dielectric breakdown (TDDB) 

• FPGAs can be “repaired” 

– Modify design (bitstream) to avoid faulty resource 

– Exploit idle, unused resources for fault repair 
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Related Work 

• Yield Enhancement 
– Reserve spare resources for repairing functional faults 

• Rows/columns of spare cells 
• Routing tracks 

– Identify faults at power up using online diagnostics 
– Automatically replace functional faults with spares 

• Increment Design Methods 
– Preserve the placement and routing data structures 
– Use placement and routing data to quickly generate a repair 

• Embedded Bitstreams  
– Embed test structures within the bitstream 
– Embed alternative path configurations within bitstream 
– Make simple decisions on configuration at run-time 



• Create initial bitstream for fault-free device 

• Create repair bitstreams for every fault 

– Repairs created before FPGA deployment 

– Apply repairs after FPGA deployment 

 

 

 

 

Repair Approach 



• Pros 

– No computation 
required in field to 
create repair 

– Repairability determined 
before deployment 

• Create initial bitstream for fault-free device 

• Create repair bitstreams for every fault 

– Repairs created before FPGA deployment 

– Apply repairs after FPGA deployment 

 

 

 

 

Repair Approach 

• Cons 

– Requires greater repair 
bitstream storage 

– Computationally intensive 
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In-Field Repair Scenario 

• Same FPGA design is placed in many products 

• Product has internet connectivity 

• Server can provide FPGA repair bitstreams 

Server 
FPGA CPU 
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Repair Focus: Placement 

• Create unique “repair” placement configurations 
– Repair faults within logic (CLB), BRAM, and DSP 

• Goals of repair placer: 
– Identify as few placement repairs as possible 
– Preserve placement quality for all repairs 
– Minimize time required to generate repair set 

• Three placement algorithms created 
– Naïve, Cost-Repair, and Shadow Placement 

• Full FPGA repair will require “repair routing” in 
addition to placement (ongoing effort) 



Baseline placer 

• Written in Java and built on RapidSmith 

 

 

• Targets Xilinx, V4 Architecture (valid bitstreams) 

• Based on simulated annealing/VPR 

 

 

 

 



Repair and FPGA Utilization 

• The number of 
repairs depends on 
the utilization of the 
design 

• Designs with less 
than 50% utilization 
only need one repair 
configuration 

 



FPGA Utilization 

• Two Repair Circuits for 67% Utilized Design 

 

 

 

• The higher the utilization, the more repair 
placements that are required: 



FPGA Utilization 

• Two Repair Circuits for 67% Utilized Design 

 

 

 

• The higher the utilization, the more repair 
placements that are required: 

Example, u=.95: Nmin ≥ .95/(.05) = 19 
 



Benchmark Circuits and Constraints 



Naïve Repair Placement 
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Naïve Replacement Results 

Number of repairs in each iteration 
 

Number of repairs for each constraint 

Cost = 1.02x cost of baseline placer 



Cost Repair Placement 
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Cost Repair Placement Results 

Number of repairs in each iteration 
 

Number of repairs for each constraint 

Cost = 1.05x cost of baseline placer 



Shadow Placement 

• Goals 

 - reduce the number of placement iterations 

 - reduce computation time 
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Shadow Placement Results 

• Completes in a single iteration 

• Time does not increase with tighter constraint 

• Disadvantage is lower quality of some repairs 

Cost = 1.41x cost of baseline placer 

Number of shadow sites 



Conclusions 

• Multiple placement configurations can be created 
before deployment for in-field repair 

– Repairs readily available 

– Requires more compute time 

• Three algorithms demonstrate a trade-off between 
run-time and circuit quality 



Future Work 

• Interconnect repair 

– Repair routing algorithms 

– Integrated routing/placement repair 

• Timing driven repair placement and routing 
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