
Placement of Repair Circuits for In-
Field FPGA Repair

Mike Wirthlin, BYU

Josh Jensen, BYU

Alex Wilson, BYU

Will Howes, BYU, LLNL

Shi-Jie Wen, Cisco Systems

Rick Wong, Cisco Systems

This work was supported by Cisco Systems and the NSF Center for High-Performance Reconfigurable computing (CHREC)

Motivation

• Difficult to manufacture FPGAs with no faults

• FPGAs may “wear out” (i.e. permanent faults)

– Electromigration, Hot Carrier Injection

– Time-dependent dielectric breakdown (TDDB)

• FPGAs can be “repaired”

– Modify design (bitstream) to avoid faulty resource

– Exploit idle, unused resources for fault repair

Motivation

• Difficult to manufacture FPGAs with no faults

• FPGAs may “wear out” (i.e. permanent faults)

– Electromigration, Hot Carrier Injection

– Time-dependent dielectric breakdown (TDDB)

• FPGAs can be “repaired”

– Modify design (bitstream) to avoid faulty resource

– Exploit idle, unused resources for fault repair

x

Motivation

• Difficult to manufacture FPGAs with no faults

• FPGAs may “wear out” (i.e. permanent faults)

– Electromigration, Hot Carrier Injection

– Time-dependent dielectric breakdown (TDDB)

• FPGAs can be “repaired”

– Modify design (bitstream) to avoid faulty resource

– Exploit idle, unused resources for fault repair

x

Related Work

• Yield Enhancement
– Reserve spare resources for repairing functional faults

• Rows/columns of spare cells
• Routing tracks

– Identify faults at power up using online diagnostics
– Automatically replace functional faults with spares

• Increment Design Methods
– Preserve the placement and routing data structures
– Use placement and routing data to quickly generate a repair

• Embedded Bitstreams
– Embed test structures within the bitstream
– Embed alternative path configurations within bitstream
– Make simple decisions on configuration at run-time

• Create initial bitstream for fault-free device

• Create repair bitstreams for every fault

– Repairs created before FPGA deployment

– Apply repairs after FPGA deployment

Repair Approach

• Pros

– No computation
required in field to
create repair

– Repairability determined
before deployment

• Create initial bitstream for fault-free device

• Create repair bitstreams for every fault

– Repairs created before FPGA deployment

– Apply repairs after FPGA deployment

Repair Approach

• Cons

– Requires greater repair
bitstream storage

– Computationally intensive

FPGA CPU

Network

In-Field Repair Scenario

• Same FPGA design is placed in many products

• Product has internet connectivity

• Server can provide FPGA repair bitstreams

Server
FPGA CPU

FPGA CPU

FPGA CPU

…

Repair
Configurations

Repair Focus: Placement

• Create unique “repair” placement configurations
– Repair faults within logic (CLB), BRAM, and DSP

• Goals of repair placer:
– Identify as few placement repairs as possible
– Preserve placement quality for all repairs
– Minimize time required to generate repair set

• Three placement algorithms created
– Naïve, Cost-Repair, and Shadow Placement

• Full FPGA repair will require “repair routing” in
addition to placement (ongoing effort)

Baseline placer

• Written in Java and built on RapidSmith

• Targets Xilinx, V4 Architecture (valid bitstreams)

• Based on simulated annealing/VPR

Repair and FPGA Utilization

• The number of
repairs depends on
the utilization of the
design

• Designs with less
than 50% utilization
only need one repair
configuration

FPGA Utilization

• Two Repair Circuits for 67% Utilized Design

• The higher the utilization, the more repair
placements that are required:

FPGA Utilization

• Two Repair Circuits for 67% Utilized Design

• The higher the utilization, the more repair
placements that are required:

Example, u=.95: Nmin ≥ .95/(.05) = 19

Benchmark Circuits and Constraints

Naïve Repair Placement

Naïve Repair Placement

 0 1 2 3 4

4

3

2

1

0

Initial Placement

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Naïve Repair Placement

 0 1 2 3 4

4

3

2

1

0

Choose site needing repair

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Naïve Repair Placement

 0 1 2 3 4

4

3

2

1

0

Remove site from database

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Naïve Repair Placement

 0 1 2 3 4

4

3

2

1

0

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Repair Placement #1

Naïve Repair Placement

 0 1 2 3 4

4

3

2

1

0

Repaired Sites

Sites needing repair
(0,0) (0,3) (1,0)
(1,1) (1,4) (2,0)
 (2,2) (2,3)
(3,0) (3,1) (3,2) (3,4)
 (4,2)

Naïve Replacement Results

Number of repairs in each iteration

Number of repairs for each constraint

Cost = 1.02x cost of baseline placer

Cost Repair Placement

Cost Repair Placement

Initial Placement

4

3

2

1

0

 0 1 2 3 4

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Cost Repair Placement

Choose sites needing repair

4

3

2

1

0

 0 1 2 3 4

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Cost Repair Placement

4

3

2

1

0

 0 1 2 3 4

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Remove sites from database and
increase cost for sites needing repair

Cost Repair Placement

4

3

2

1

0

 0 1 2 3 4

Sites needing repair
(0,0) (0,2) (0,3) (1,0)
(1,1) (1,3) (1,4) (2,0)
(2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,4)
(4,0) (4,2) (4,4)

Repair Placement #1

Cost Repair Placement

4

3

2

1

0

 0 1 2 3 4

Sites needing repair
(0,0) (0,3) (1,0)
(1,1) (1,4) (2,0)
 (2,2) (2,3)
(3,0) (3,1) (3,2) (3,4)
 (4,2)

Repaired Sites

Cost Repair Placement Results

Number of repairs in each iteration

Number of repairs for each constraint

Cost = 1.05x cost of baseline placer

Shadow Placement

• Goals

 - reduce the number of placement iterations

 - reduce computation time

Shadow Placement

 0 1 2 3 4

4

3

2

1

0

All
Shadows

Place all shadow sites at one location

Shadow Placement

 0 1 2 3 4

4

3

2

1

0

All
Shadows

L3

L7

L5

L4

L1

L2

L8

L9

L10

L7

Randomly place main resources

Shadow Placement

 0 1 2 3 4

4

3

2

1

0

L3

L6

L7 L5

L4

L1

L2

L8

L9 L10

S 4

S 5,6

S 1,2,
9,8

S 3,
7,10

Placement after anneal

Shadow Placement

 0 1 2 3 4

4

3

2

1

0

L3

L6

L7 L5

L4

L1

L2

L8

L9 L10

S 4

S 5,6

S 1,2,
9,8

S 3,
7,10

Choose site to repair and swap with shadow

Shadow Placement

 0 1 2 3 4

4

3

2

1

0

L3

L6

L7 L5

L4 L1

L2

L8

L9 L10

Repair placement file

Shadow Placement Results

• Completes in a single iteration

• Time does not increase with tighter constraint

• Disadvantage is lower quality of some repairs

Cost = 1.41x cost of baseline placer

Number of shadow sites

Conclusions

• Multiple placement configurations can be created
before deployment for in-field repair

– Repairs readily available

– Requires more compute time

• Three algorithms demonstrate a trade-off between
run-time and circuit quality

Future Work

• Interconnect repair

– Repair routing algorithms

– Integrated routing/placement repair

• Timing driven repair placement and routing

A B C

D E

F

A B C

D E

F

Questions

?

