

Location, Location, Location: The Role of Spatial Locality in Asymptotic Energy Minimization

André DeHon andre@seas.upenn.edu

Question

 Are FPGAs more or less energy efficient than processors?

Importance:

 Computation/chip limited by energy-density not transistor capacity
 → dark silicon

National Academy Press, 2011

- Energy efficiency determines battery life

Findings

- Oversimplifed soundbyte:
 - FPGAs use less energy than processors
- More precisely:
 - There is an asymptotic advantage to
 - Parallel, spatial evaluation
 - Over sequential evaluation on central processor
 - When
 - There is any spatial locality (Rent p<1.0)
 - There is uniform average gate activity
- With "enough" spatial locality (p<0.5), FPGAs use Θ(N) energy

Intuition

- Given a good spatial layout
 - It is cheaper to transmit the result of a gate to its well-placed consumers
 - average wire length $O(N^{p-0.5}) \leq O(N^{0.5})$
 - -O(1) for p<0.5
 - Than to
 - Fetch inputs from a large central memory – O(N^{0.5})

Outline

- Model
- Central Processor
- Spatial Locality
 - Description
 - Data
 - Instruction
- Asymptotic Results
- Unanswered

Gate Array Evaluation Model

- For each "circuit"
 - Evaluate N k-input gates (k constant, e.g. 4)
- Assume
 - Must evaluate every gate every time
 - Every gate active (may switch)

Fully Banked Memory

- Only activate path to leaf
- O(M^{0.5}) wire length
- Random access must send address
 – O(M^{0.5}log(M))
- Sequential access avoid address per bit

Central Processor

- Each instruction specifies source nodes so is O(log(N)) long
 – O(N^{1.5}log^{1.5}(N))
- Read/write O(N) bits
 O(N^{1.5}log(N))

Problem 1: Description Locality

 Costs O(Nlog(N)) for description since can assume any input comes from anywhere

Spatial Locality

- If we place a circuit well,
 - Most of the inputs can be "close"
- More formally: Rent's Rule
 - If we recursively bisect a graph, attempting to minimize the cut size, we typically get:

$IO = c N^p$

-p≤1 means many inputs come from within a partition

Description Lemma

- If p<1.0, can describe computation with O(N) memory.
 - If something close by, only need to use bits proportional to subtree height

Central Processor with **Description Locality**

- p<1.0, total instruction
 Read/write O(N) bits bits are O(N) $- O(N^{1.5})$
 - $O(N^{1.5}log(N))$

Problem 2: Data Locality

 Must pay O(N^{0.5}) for every read since data must be moved in and out of memory.

Sequential with Data Locality

- Store data at endpoints
- Send through network from producer to consumer
- Store location at leaves – O(log(N))
- Build H-Tree to keep area to O(Nlog(N))

Sequential with Data Locality

- Area = O(Nlog(N))
- Sending addresses log(N) bits at top
- Signals lower O(1)
- Only send a few over top O(N^p)
- O((log^{1.5}N)N^{p+0.5}) for p>0.5
- Cheaper to send where needed than to central location.

Problem 3:

 Multiply energy by O(log(N)) to send an address up the tree

Fully Spatial (FPGA)

- Like an FPGA
- Each signal gets own wire
- No addresses
- Configuration local
- Area grows as O(N^{2p}) for p>0.5
- Energy O(N^{2p}) for p>0.5
 - $\Theta(N)$ for p<0.5
- Multilayer metal

 $- \underbrace{\text{Energy O}(N^{p+0.5}) \text{ for } p>0.5}_{\text{DeHon--FPGA 2013}}$

Instructions Local to Switches

- Constant metal \bullet
- Build p<0.5 tree ullet
- Store bits local to each tree level
- Read out of memory there
- Bits/switch differs with tree level
- Signal on wire dominates reads
- O(N^{p+0.5}) for p>0.5

Results: Energy

Org	Any p	p<1.0	1>p>0.5	p=0.5	p<0.5
Processor	O(N ^{1.5} log ^{1.5} N)	O(N ^{1.5} logN) Description Locality			
Data Locality (Packet Switch)		C)(N ^{p+0.5} log ^{1.5} N)	O(Nlog ^{2.5} N)	O(Nlog ^{1.5} N)
FPGA 2-metal			O(N ^{2p})	O(Nlog ² N)	Θ(N)
FPGA multilevel			O(N ^{p+0.5})	O(NlogN)	Θ(N)
Multicontext			O(N ^{p+0.5})	O(NlogN)	Θ(N)

Location¹, Location², Location³

- To minimize asymptotic energy, essential to exploit spatial locality to:
 - 1. Reduce size of **description**
 - 2. Minimize data movement energy
 - Argues against centralized processor
 - 3. Reduce or eliminate **instruction** energy
 - Argues for configuration
 - Local to the resources controlled

Not Answered by This Paper

- Non-uniform activity
- Limited internal state
- SIMD word sharing of instructions
- Constants
 - Maybe O(1) sequential processors at leaves of tree OK? Better constants?
- Tighter lower bounds

Findings

- Oversimplifed soundbyte:
 - FPGAs use less energy than processors
- More precisely:
 - There is an asymptotic advantage to
 - Parallel, spatial evaluation
 - Over sequential evaluation on central processor
 - When
 - There is any spatial locality (Rent p<1.0)
 - There is uniform average gate activity
- With "enough" spatial locality (p<0.5), FPGAs use Θ(N) energy