Minimum Energy Operation of Clustered Island-Style FPGAs

Peter Grossmann, Miriam Leeser, Marvin Onabajo

(grossmann@ll.mit.edu, mel@coe.neu.edu, monabajo@ece.neu.edu)

The Lincoln Laboratory portion of this work was sponsored by the Department of the Air Force under Air Force contract number FA8721-05-C-0002. The opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

FPGA13-1 PJG 3/6/2013

- Motivation for minimum energy FPGAs
- Introduction to minimum energy digital circuits
- Subthreshold FPGA test chip measurements
- Subsonic Mini FPGA and minimum energy analysis technique
- Minimum energy point variation across multiple benchmark circuits on Subsonic Mini
- Summary

- Low power systems benefit from FPGAs
 - Improved energy efficiency/performance vs. microcontroller
 - Improved design via reconfigurability
 - Lower cost vs. ASIC
- Lowest power systems (< 1 mW) have been slow to adopt FPGAs
 - Limited logic resources
 - High static power vs. microcontrollers
- Lowest power systems need a minimum energy FPGA
 - Prioritize energy consumption over performance
 - Maximize voltage scaling benefit for static power reduction

- Voltage scaling causes competing static energy penalty and dynamic energy savings
- Minimum energy point:
 - is usually subthreshold
 - depends on circuit design and input activity

Minimum energy predictions for FPGAs:

- Higher minimum energy voltages than ASICs
- Dependency on FPGA architecture and utilization

Subthreshold vs. Superthreshold Circuits

- Delay increases, power decreases by orders of magnitude
- Low speed supports many ultra-low power applications
- Minimizing power-delay product maximizes energy efficiency

Exponential I-V relationship drastically increases process variation sensitivity below V_{TH}

FPGA13-5 PJG 3/6/2013

- Our work: IBM 0.18 µm SOI test chip with 4x4 array of tiles
- Differences from previous work
 - Single supply voltage
 - Latches instead of SRAM for configuration bits
 - Unidirectional routing fabric
 - Static CMOS instead of pass transistors for multiplexers
 - Previous work:
 - J. F. Ryan and B. H. Calhoun, "A sub-threshold FPGA with lowswing dual-VDD interconnect in 90nm CMOS," in *Proc. Custom Integrated Circuits Conference (CICC), Sep. 2010, pp. 1-4.*

Test Chip Die Photograph

- Clustered, island-style FPGA
- Clusters of 8 basic logic elements (BLEs) good BLE count for low-power FPGAs
- Directional, single driver routing

Connection Block (CB)

FPGA13-7 PJG 3/6/2013

Sample Test Chip Measurements

	V _{DD} =1.5V	V _{DD} =0.26V
Max Frequency	16.7 MHz	322 kHz
Power @ F _{max}	76.5 mW	34.6 μW
Power Delay Product	4.6 × 10⁻ ⁹	0.11 × 10 ⁻⁹

- FPGA programmed as array of 16 4-bit counters
- Data collected on Agilent SoC 93000 ATE
- Minimum operating voltage across all dies: 0.26V
- Average minimum operating voltage: 300 mV
- Lowest voltage at which an FPGA has been successfully programmed

Sample Shmoo Plot

$$PDP = V_{DD} \cdot I \cdot T_{clk}$$

Power Delay Product
 (PDP) == average energy
 per clock cycle

 If FPGA can be kept busy enough, minimum energy point is below threshold

 Expect practical circuits to have higher minimum energy point

- Motivation for minimum energy FPGAs
- Introduction to minimum energy digital circuits
- Subthreshold FPGA test chip measurements
- Subsonic Mini FPGA and minimum energy analysis technique
- Minimum energy point variation across multiple benchmark circuits on Subsonic Mini
- Summary

- Design a VPR-compatible FPGA (Subsonic Mini)
- Devise a simulation-based approach for estimating minimum energy point
- Investigate FPGA PDP and minimum energy point sensitivity across multiple benchmark circuits

Approach taken

Combine Cadence IC design and verification tools with VPR and custom scripts to plot PDP vs. voltage

Subsonic Mini FPGA

VPR Parameter	Value
К	4
N	8
l I	18
F _{cin}	0.333
F _{cout}	1
Fs	3
W	20
L	1

- Fully connected input crossbar
- 6x6 array of tiles (288 total 4-LUT/flip-flop pairs)
- IOBs with 2 I/Os per block, no level shifters
- Added logic to read configuration bits off-chip

- Process Details
 - IBM 65 nm low power bulk process
 - Standard-V_{TH} transistors used throughout

- IC CAD details
 - Leaf cells characterized with Cadence Liberate from extracted layout
 - Benchmarks simulated with gate-level Verilog and SDF back-annotation
 - 1000 random input test vectors applied
- FPGA CAD details:
 - Ran 10 VPR trials for each benchmark at each V_{DD}
 - Place and route solution with smallest critical path delay used
- Benchmarks used: 21 ISCAS '85 circuits

 Minimum energy point slightly above threshold

 Local minima likely caused by variation in routing solution quality

Sample Benchmark PDP vs. V_{DD} Plots

FPGA13-16 PJG 3/6/2013

Sample Benchmark PDP vs. V_{DD} Plots

Minimum Energy V_{DD} vs. Benchmark Input Count and LUT Utilization for 21 ISCAS '85 Benchmarks

Minimum Energy V_{DD} vs. Benchmark Input Count and LUT Utilization for 21 ISCAS '85 Benchmarks

- First multi-benchmark FPGA minimum energy point study
 - Analysis, results differ from ASIC studies
 - Multiple benchmarks produce a range of results

• The energy efficiency of a circuit mapped to an FPGA influences the FPGA's minimum energy point

• A programmable supply voltage is required to optimize FPGA energy efficiency across a range of use cases

- Investigate minimum energy point analysis accuracy vs.
 Spectre simulations for a single tile
- Perform analysis on 30x30 array with Toronto20 benchmarks
- Incorporate power model into VPR 6.0 and compare results
- Explore minimum energy point sensitivity to FPGA architecture parameters

- Measurement results from fabricated FPGA test chip
 - Single 260 mV supply lowest programming voltage for FPGAs
 - Subthreshold minimum energy point under high activity conditions
- Minimum energy point estimation using ASIC verification techniques and FPGA CAD tools
 - Slightly above threshold minimum energy point for real benchmark circuits
 - Minimum energy point is a benchmark circuit property
 - Optimizing FPGA energy efficiency requires tuning the supply voltage to an application-specific value

- MIT Lincoln Laboratory
 - Lincoln Scholars Program
 - **Group 83**
 - Group 88 WeiLin Hu, Tony Soares
 - LLCAD

Peter Grossmann (grossmann@ll.mit.edu)

• List of backup slides here

Minimum Energy Analysis—Detailed

Bitstream and Schematic Generation

FPGA13-29 PJG 3/6/2013

Adding Timing to VPR Architecture Files

Complete VPR Post-Processing Flow

FPGA13-32 PJG 3/6/2013

Complete FPGA CAD Flow

 Use bitstream file to generate Verilog testbench task calls for programming

 One test case per benchmark per V_{DD}

• 10 VPR trials per test case

Subthreshold Digital Circuit Design Considerations

- Static CMOS still effective
- P:N sizing ratio typically increases (2:1 -> 10:1)
- Higher uncertainty in delay
- Some circuit styles limit minimum functional V_{DD} and should be avoided
 - Parallel off transistors w/o corresponding on transistors
 - Series stacks with more than two transistors
 - Circuits dependent on transistor sizing ratios

Multiplexer Leaf Cells

NMOS-controlled Output Transitions

- PMOS transistors more vulnerable to process variation
- DTMOS configuration more robust, but has 2.6X area penalty

- 0.18 µm IBM SOI process
- Min W, L, P:N = 2:1
- Post-layout circuit netlists
- 100 Monte Carlo iterations
- Apply variation to testbench drivers, loads as well as DUT

PMOS-controlled Output Transitions

Configuration Bit Storage

Standard 6T SRAM Bit Cell

- Exploit FPGA use case: slow writes, no random access reads
- Improve robustness by eliminating contention during writes
- Minimize area by eliminating extra transistors, supplies

Subthreshold 6T SRAM Bit Cell

- 0.18 µm IBM SOI process
- Post-layout circuit netlists
- 100 Monte Carlo iterations
- Applied variation to testbench drivers, loads as well as DUT

- IBM 0.18 µm SOI Process
- Two test chips fabricated: conventional and DTMOS multiplexers
- Both chips use 6T latch for configuration bits

Test Chip #1—Conventional Multiplexers

Test Chip #2—DTMOS Multiplexers