Improving Bitstream Compression by Modifying FPGA Architecture

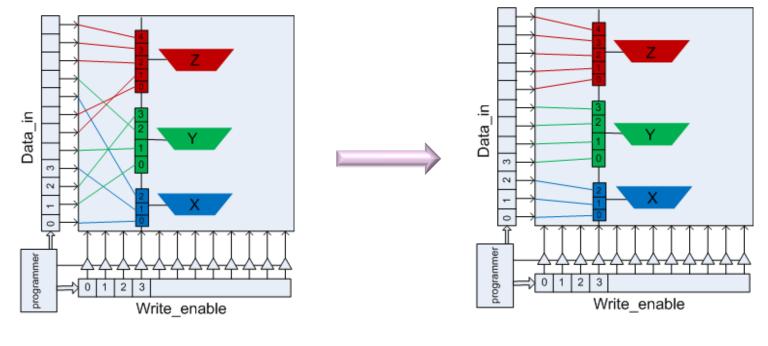
Seyyed Ahmad Razavi, Morteza Saheb Zamani Amirkabir University of Technology, Tehran, Iran {a.razavi, szamani}@aut.ac.ir

> Presented by: Ehsan K. Ardestani UC Santa Cruz

Introduction

- Configuration Bitstream
 - 9 400 Mega bits: Virtex 7
 - Problems:
 - Long time to load to the FPGA
 - Larger non-volatile memory chip
- Solution: Bitstream compression

Introduction


- Previous work
 - The effects of routing resource structure on the bitstream compressibility have not been studied.

• Our work:

- Choose a proper order for configuration bits
- Choose appropriate bit length for the symbols
- The order of inputs of switch module MUX

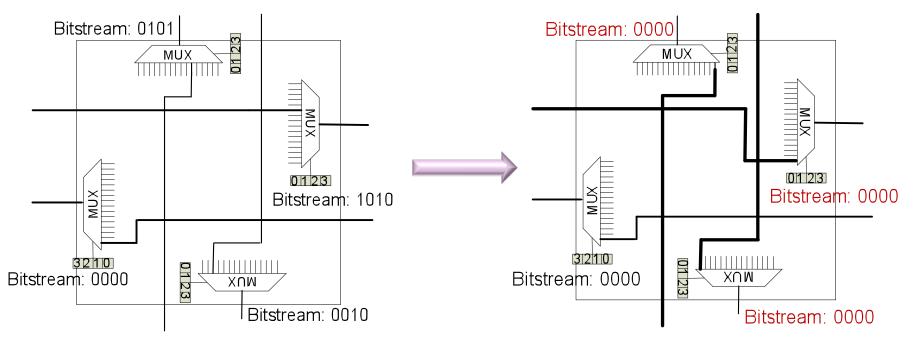
Bitstream format

- The configuration bits of each MUX should be kept together
 - by modifying the *write_enable* and *data_in* lines of SRAM cells
 - => more identical symbols => more compression rate
- Example: Three MUXs: X ($x_0x_1x_2$), Y ($y_0y_1y_2y_3$), Z($z_0z_1z_2z_3z_4$)

 $"x_0y_0y_3x_1y_1z_1z_0x_2y_2z_2z_3z_4"$

 $"x_0x_1x_2y_0y_1y_2y_3z_0z_1z_2z_3z_4"$

Symbol length


• Symbol length affects the compression rate.

Bitstream	$x_0x_1x_2y_0y_1y_2y_3z_0z_1z_2z_3z_4$
3-bit symbol	$(x_0x_1x_2), (y_0y_1y_2), (y_3z_0z_1), (z_2z_3z_4)$
4-bit symbol	$(x_0x_1x_2y_0), (y_1y_2y_3z_0), (z_1z_2z_3z_4)$
Variable length symbol	$\begin{array}{c} (x_0 x_1 x_2), \ (y_0 y_1 y_2 y_3), \ (z_0 z_1 z_2 z_3 z_4) \\ \text{Related mask: } 3, 4, 5 \end{array}$

- Variable symbol length instead of fixed symbol length
 - the configuration bits of each MUX constitute a single symbol.
 - more identical symbols => more compression rate
 - The overhead of mask is low.

The order of Inputs for switch modules' MUXs

- Increasing the number of identical symbols by assigning the same symbols to more frequent routing pattern
 - Some routing patterns in the design are more frequent than the others.
 - E.g. straight routing
 - => Inputs of all the MUXs are ordered in a way that a unique symbol (e.g. "0000") represents all straight patterns.

Our framework

Our framework:

- Integrated with VPR 5
- Generates the HDL code of a tileable homogenous FPGA automatically.
 - Consists of 25 basic tiles
- Supports:
 - Unidirectional routing architecture
 - Any wire segment length, CLB and BLE size, and channel width.
- Generates the required information and scripts for producing the layout
 - e.g. the location of the pins of the tiles which is required for the abutment of the tiles
- Generates the bitstream
- Simulations have verified our FPGA implementation.

Experimental results and Conclusion

- Results:
 - Compression rate is improved by 46% over 20 MCNC benchmarks
- Conclusion and future works:
 - The bitstream format has a significant effect on compression.
 - The FPGA architecture are modified to improve the efficiency of the target compression method.
 - Other architectural modifications for specific compression algorithms