
Towards Simulator-like
Observability for FPGAs:

A Virtual Overlay Network for Trace-Buffers

Eddie Hung, Steven J. E. Wilton
{eddieh,stevew}@ece.ubc.ca

University of British Columbia
Vancouver, Canada

FPGA :: Feb 12 2013

2

What this talk is about

● A network that multiplexes all on-chip circuit signals to a
limited number of trace-buffers for rapid debug

● Key Novelties:

1) Realized using an efficient network architecture

2) Built using spare routing multiplexers in Switch-Blocks

3) CAD Algorithm that can rapidly configure this

● Outcome: 10,000s observed signals for zero overhead

FPGA

User
Circuit

Virtual
Overlay
Network

Trace
Buffers

In
te

rn
a
l
S

ig
n
a
ls

3

Introduction

● Debug is the process of locating and
eliminating design errors – 'bugs' – in ICs

● Important as mistakes in silicon cost big money

● 2007: AMD K10 TLB bug – 4 months for re-spin

● 2011: Intel 'Sandy Bridge' chipset – $700 mil. recall

4

Introduction

● Pre-Silicon techniques alone are insufficient

● Software simulation effective, but slow

– Intel: Core i7 (2.6 GHz) simulates at 2-3Hz

● Formal verification limited to small components

● Unable to interact with real-world stimulus

● FPGA prototypes -- fast and physical

● Instant circuit fabrication: quick turnaround

● Runs at near-speed: increased coverage

5

Primary Challenge: Observability

● Insert small amount of debug circuitry in design

● Sample subset of signals into on-chip memory

● Capture a sequence of states, at full speed

PC
External

Stimuli

Real-time data collection Off-line analysis

a

b

c

d

e

Waveform

 Instrumented
 FPGA

FPGA

User Design

Trace BufferCtrl

6

Introduction: Trace-Buffers

● Insert small amount of debug circuitry in design

● Sample subset of signals into on-chip memory

● Capture a sequence of states, at full speed

● Trace IP:

● Xilinx ChipScope Pro, Altera SignalTap II,
Tektronix Certus

7

Introduction: Trace-Buffers

● Insert small amount of debug circuitry in design

● Sample subset of signals into on-chip memory

● Capture a sequence of states, at full speed

Compile
(hours)

Debug

Refine signal selection

But every time you want
to change this subset,

must recompile!

Many iterations required
to root-cause bugs

8

Long term vision:
Simulator-like Observability

● What do we mean by this?

● No more re-compilation to change signals

Refine signal selection
(seconds)

Compile
(hours)

Debug

9

Our Solution

● Composed of three novelties:

FPGA

User
Circuit

Trace
Buffers

In
te

rn
a
l
S

ig
n
a
ls

1. Network Topology

2. Network Implementation

3. Network CAD

10

Novelty 1:
Network Topology

11

Overlay Network Topology

● Big Idea: build a network which multiplexes all
user signals to trace-buffer inputs

FPGA

User
Circuit

Trace
Buffers

In
te

rn
a
l
S

ig
n
a
ls

12

Overlay Network Topology

● Big Idea: build a network which multiplexes all
user signals to trace-buffer inputs

FPGA

User
Circuit

Trace
Buffers

In
te

rn
a
l
S

ig
n
a
ls

13

Overlay Network Topology

● Big Idea: build a network which multiplexes all
user signals to trace-buffer inputs

FPGA

User
Circuit

Trace
Buffers

In
te

rn
a
l
S

ig
n
a
ls

14

Overlay Network Topology

● Key characteristics:

● Each trace-buffer input can select signals
independently of all other trace-inputs

● Detailed connections of network Novelty 2⇒

FPGA

User
Circuit

Trace
Buffers

In
te

rn
a
l
S

ig
n
a
ls

15

Novelty 2:
Network Implementation

Debug
Compile
(hours)

16

● Construct a network connecting all on‑chip
signals to TBs (every used LUT/FF, RAM, DSP)

Overlay Network Implementation

Logic
Blocks

Routing
Wires

17

● Construct a network connecting all on‑chip
signals to TBs (every used LUT/FF, RAM, DSP)

● First, compile user circuit as normal

Overlay Network Implementation

Logic
Blocks

A

D

C

B

Routing
Wires Net

18

● Construct a network connecting all on‑chip
signals to TBs (every used LUT/FF, RAM, DSP)

● Insert network incrementally: without affecting user
circuit, utilizing spare routing resources left behind

Overlay Network Implementation

Logic
Blocks

A

D

C

B

Routing
Wires

19

● Construct a network connecting all on‑chip
signals to TBs (every used LUT/FF, RAM, DSP)

● Insert network incrementally: without affecting user
circuit, utilizing spare routing resources left behind

Overlay Network Implementation

Routing
Wires

Logic
Blocks

Wire Driver

Each spare wire
is a spare mux!

0 1 Configuration Memory

3

0

20

● Construct a network connecting all on‑chip
signals to TBs (every used LUT/FF, RAM, DSP)

● Insert network incrementally: without affecting user
circuit, utilizing spare routing resources left behind

Overlay Network Implementation

3

0 1 Configuration Memory0

Modifiable using:

● Dynamic Partial Reconfiguration
● Altera claims to be able to do this...

● Editing Static Bitstream and Programming
● Academic tools exist to do this (vendor tools should too!)

● No place-and-route necessary

21

Compile
(hours)

Novelty 3:
Network CAD

Debug

22

● Previously...

Overlay Network CAD

FPGA Routing
ResourcesUser Circuit

23

● Previously...

Overlay Network CAD

Trace-Buffer
Access Network

FPGA Routing
Resources

Compile-time
Construction User Circuit

Compile
once

Virtual Overlay
Network

24

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

Trace-Buffer
Access Network

FPGA Routing
Resources

 state[0] result[1]
 state[1] result[2]

state[2] ...

Designer's
Signal-Selection

Debug-time
Matching

Compile-time
Construction User Circuit

Virtual Overlay
Network

Compile
once

Debug
repeatedly

25

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● But Overlay Network is a Blocking Network

● Unlike crossbar, not all combinations of signals can
be forwarded

26

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● But Overlay Network is a Blocking Network

● Unlike crossbar, not all combinations of signals can
be forwarded

A 1

B
2

C

3

A

B

CD

27

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● But Overlay Network is a Blocking Network

● Unlike crossbar, not all combinations of signals can
be forwarded

A 1

B
2

C

3

A

B

CD

28

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● But Overlay Network is a Blocking Network

● Unlike crossbar, not all combinations of signals can
be forwarded

A 1

B
2

C

3

A

B

C

A

C

B

OK!

D

29

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● But Overlay Network is a Blocking Network

● Unlike crossbar, not all combinations of signals can
be forwarded

A 1

B
2

C

3D

B & D
can never be
observed at

the same time!

30

A

B

C

1

2

3D

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● Solve using bipartite graph maximum-matching!

Connectivity Graph

31

A

B

C

1

2

3

A

B

C

1

2

3D

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● Solve using bipartite graph maximum-matching!

Connectivity Graph Matched Graph

32

A

B

C

1

2

3

A

B

C

1

2

3D

Overlay Network CAD

● Routing multiplexers must be configured for
each new set of trace signals

● Solve using bipartite graph maximum-matching!

Connectivity Graph Matched Graph

Really nice:
maximum-matching
for bipartite graphs

is optimal and
solvable in

polynomial time

33

Overlay Network: Results

● Largest benchmark: “mcml”

● 100,000 LUTs, 30 DSPs, 38 RAMs

● 119x119 FPGA

● 247 RAMs free, at 72 data inputs each

– Total: 17784 trace-buffer inputs

34

Overlay Network: Results

Signals Requested
(Normalized to trace-buffer capacity)

A
v
e
ra

g
e

 S
ig

n
a

ls
 M

a
tc

h
e
d

Dashed lines: Ideal match

Solid lines: Actual match

17,784 signals: 97% observability

16,006 signals: 100% observability

35

Overlay Network: Matching Runtime

Signals Requested
(Normalized to trace-buffer capacity)

Even for our biggest
circuit, it only takes
50 seconds to find

a new match for this
network!

(even faster if we
didn't use Python)

36

Overlay Network: Delay

● Circuit with overlay network: +9.0% delay

● Recall: network installed incrementally

● Increase solely due to wirelength of network

● But network does not affect user circuit!

● Original operating frequency can always be
restored by disregarding instrumentation

37

Simulator-like Observability
... are we there yet?

● Trace-buffers have finite memory capacity

● But even in simulation, is all trace data necessary?

● External triggering assumed

● Deep trace-buffers can tolerate triggering latency

● Work-in-progress: On-chip triggering

● Feasible to realize on commercial FPGAs

● Currently exploring: RapidSmith / GoAhead

38

Conclusion

● FPGAs commonly used to prototype ASICs

● Primary challenge during debug: Observability

● Accepted solution: Trace-Buffers

● Only records subset of signals, recompile to change

● We propose building an overlay network for TBs

● Utilizing an efficient network topology

● Constructed out of reclaimed routing muxes (free!)

● CAD algorithm to create network match in seconds

● Outcome: 10,000s observed signals with no overhead

39

Backup Slides

40

Introduction

● Challenge in post-silicon debug: visibility

● Limited I/O lack of access to internal nodes⇒

Virtex
(220nm)

Virtex-E
(180nm)

Virtex II Pro
(130nm)

Virtex 4
(90nm)

Virtex 5
(65nm)

Virtex 6
(40nm)

Virtex 7
(28nm)

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

0

400

800

1,200

1,600

2,000
Logic

I/O

L
o

g
ic

 C
e
ll

s

U
s
e
r

I/
O

41

Routing Utilization on VPR

● At minimum channel width + 30%

Benchmark Before After

LU8PEEng 51% 76%

stereovision2 38% 68%

bgm 50% 79%

LU32PEEng 41% 74%

mcml 36% 79%

42

Routing Utilization on Altera Devices

● Uninstrumented circuit

43

● Existing IP (ChipScope, SignalTap) build single
point‑to‑point trace connections for each signal:

Virtual Overlay Network

Logic
Cluster

A
Trace
Buffer

Switch-Box Routing Multiplexers

Connection-Box Routing Multiplexer

44

● Existing IP (ChipScope, SignalTap) build single
point‑to‑point trace connections for each signal

● We propose building an overlay network out of
spare routing muxes to connect multiple signals

Virtual Overlay Network

Logic
Cluster

A

Logic
Cluster

C

Trace
Buffer

00 01 01 10

FPGA Configuration Memory

Signal B

Signal D

45

Overlay Network: Compile-time

● Routing Resource Graph: Point-to-Point

C
ir

c
u
it
 S

ig
n

a
ls

Routing Resources

Trace-Buffer
Inputs

B

C

D

A

E

Occupied node

46

Overlay Network: Compile-time

● Our approach: Disjoint Union of Trees

B

C

D

A

E

1: {A,B}

2: {C,D,E}

At debug-time, designers
can change muxes to

look at any single signal!

47

Overlay Network: Compile-time

● Virtual Network: Signals as leaves of many trees

At debug-time,
designers can
change muxes
to look at any
comb. of two

signals!

B

C

D

A

E

2: {A,B,C}

3: {C,D,E}

4: {D,E}

1: {A,B}

48

Overlay Network: Compile-time

● Virtual Network: Signals as leaves of many trees

At debug-time,
designers can
change muxes
to look at any
comb. of two

signals!

(actually, for this
particular hand
example, any
comb. of four

signals!)

B

C

D

A

E

2: {A,B,C}

3: {C,D,E}

4: {D,E}

1: {A,B}

49

Overlay Network: Reduced BRAM

50

Overlay Network: Reduced Routing

Fails gracefully...!

51

Overlay Network: CAD Runtime

~34% runtime overhead

52

Overlay Network: Matching Runtime

Signals Requested
(Normalized to trace-buffer capacity)

Even for our biggest
circuit, it only takes
50 seconds to find

a new match for the
network!

(even faster if we
didn't use Python)

