
Dynafuse: Dynamic Dependence
Analysis for FPGA Pipeline Fusion and
Locality Optimizations

Jeremy Fowers, Greg Stitt
University of Florida
Department of Electrical and Computer Engineering

1

Dynafuse Optimization

•  High-level synthesis (HLS) useful for FPGA
productivity

•  Generally unaware of data dependencies
–  Unnecessary PCIe transfers and missed parallelism

2

Application code:

void f(int *a, int *b, int *c) {
 …
 *a = f1();
 *b = f2();
 *c = f3();
 f4(a);

}

Dynafuse Optimization

•  Result: pessimistic data management

Application code:

F1(/*in*/ A, /*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, /*out*/ C)

CPU

FPGA

F1()
A

B F2()

3

Dynafuse Optimization

Application code:

F1(/*in*/ A, /*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, /*out*/ C)

CPU

FPGA

F1()
B

C F2()

4

•  Result: pessimistic data management

FPGA

mem

Locality Exploitation

•  PCIe bus is inefficient
– Up to 65% of total execution time

•  FPGA boards often have multiple DDR RAMs

Application code:

F1(/*in*/ A, /*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, /*out*/ C)

CPU

FPGA

F1()

F2()

A B

5

FPGA

mem

Locality Exploitation

•  PCIe bus is inefficient
– Up to 65% of total execution time

•  FPGA boards often have multiple DDR RAMs

Application code:

F1(/*in*/ A, /*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, /*out*/ C)

CPU F1()

F2() B C

•  Saves 2N-2 transfers for N functions, 2 in this case
6

Pipeline Fusion

•  Many FPGA functions are pipelined
•  Fuse dependent functions into single

pipeline

Application code:

F1(/*in*/ A, /*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, /*out*/ C)

CPU

FPGA

F1()

F2()

A

C

F1()
+

F2()

•  Fusing N pipelines creates Nx speedup
7

Dynafuse Overview

•  The Dynafuse optimizations:
– Locality Exploitation and Pipeline Fusion
– Automatic & transparent

•  SW: Dynamic Dependence Analysis
– Coherent Arrays
– Function Queue

•  HW: Fusion Network

8

Dynafuse Challenges

•  Information for locality exploitation:

1 Which device memory has the most recent
copy of the data?

9

Coherent Arrays

Int[] data

CPU

mem

FPGA

mem

???

Int A* Int B* Int C*

???

•  Std arrays have locality, alias issues
•  Resolved by Coherent Arrays

10

Coherent Arrays

•  Std arrays have locality, alias issues
•  Resolved by Coherent Arrays

Private int
Location

Private int
ID

Operator
Overloading

[] and *
FPGA

Interface

Coherent
Array

Int[] data

11

Data management

2 Coherent array does not immediately return
output

3 Reads/writes ensure locality before returning

1 All data starts on the CPU

Application code:

1  CoherentArray A
2  CoherentArray B
3  CoherentArray C
4  FPGA_F1(A, B)
5  Other_Functions()
6  FPGA_F2(B, C)
7  File.write(C)

CPU

FPGA

A

12

Application code:

1  CoherentArray A
2  CoherentArray B
3  CoherentArray C
4  FPGA_F1(A, B)
5  Other_Functions()
6  FPGA_F2(B, C)
7  File.write(C)

CPU

FPGA

Data management

2 Coherent array does not immediately return
output

3 Reads/writes ensure locality before returning

1 All data starts on the CPU

A

C
B

13

CPU

FPGA

Data management

2 Coherent array does not immediately return
output

3 Reads/writes ensure locality before returning

1 All data starts on the CPU

B A

Application code:

1  CoherentArray A
2  CoherentArray B
3  CoherentArray C
4  FPGA_F1(A, B)
5  Other_Functions()
6  FPGA_F2(B, C)
7  File.write(C)

C

14

CPU

FPGA

Data management

2 Coherent array does not immediately return
output

3 Reads/writes ensure locality before returning

1 All data starts on the CPU

B A

Application code:

1  CoherentArray A
2  CoherentArray B
3  CoherentArray C
4  FPGA_F1(A, B)
5  Other_Functions()
6  FPGA_F2(B, C)
7  File.write(C)

C

15

CPU

FPGA

Data management

2 Coherent array does not immediately return
output

3 Reads/writes ensure locality before returning

1 All data starts on the CPU

B A

Application code:

1  CoherentArray A
2  CoherentArray B
3  CoherentArray C
4  FPGA_F1(A, B)
5  Other_Functions()
6  FPGA_F2(B, C)
7  File.write(C)

C

16

CPU

FPGA

Data management

2 Coherent array does not immediately return
output

3 Reads/writes ensure locality before returning

1 All data starts on the CPU

C

Application code:

1  CoherentArray A
2  CoherentArray B
3  CoherentArray C
4  FPGA_F1(A, B)
5  Other_Functions()
6  FPGA_F2(B, C)
7  File.write(C)

B A

File

17

Data management

2 Coherent array does not immediately return
output

3 Reads/writes ensure locality before returning

1 All data starts on the CPU

•  Result:
–  No unnecessary PCIe transfers
–  Intermediate data is already on the FPGA

CPU

FPGA

C

Application code:

1  CoherentArray A
2  CoherentArray B
3  CoherentArray C
4  FPGA_F1(A, B)
5  Other_Functions()
6  FPGA_F2(B, C)
7  File.write(C)

B A

18

Dynafuse Challenges

•  Information for locality exploitation:

•  For pipeline fusion:

1 Which device memory has the most recent
copy of the data?

2 Which future functions need the output of the
current function?

19

Application code:

1  FPGA_F1(A, B)
2  FPGA_F2(B, C)
3  FPGA_F3(X, Y)
4  File.write(C)
5  File.write(Y)

Dynamic Dependence Analysis

Function Queue

2 Coherent arrays used to establish
dependence chains

3 CPU functions trigger the entire chain that
produces the requested value

1 FPGA functions are placed on the queue
when called—not executed

FPGA

FPGA_F1(A, B) P1

20

Application code:

1  FPGA_F1(A, B)
2  FPGA_F2(B, C)
3  FPGA_F3(X, Y)
4  File.write(C)
5  File.write(Y)

Dynamic Dependence Analysis

Function Queue

FPGA_F1(A, B)

2 Coherent arrays used to establish
dependence chains

3 CPU functions trigger the entire chain that
produces the requested value

1 FPGA functions are placed on the queue
when called—not executed

P1

FPGA

FPGA_F2(B, C)

21

Dynamic Dependence Analysis

Application code:

1  FPGA_F1(A, B)
2  FPGA_F2(B, C)
3  FPGA_F3(X, Y)
4  File.write(C)
5  File.write(Y)

Function Queue

FPGA_F1(A, B)
FPGA_F2(B, C)

2 Coherent arrays used to establish
dependence chains

3 CPU functions trigger the entire chain that
produces the requested value

P1

FPGA

1 FPGA functions are placed on the queue
when called—not executed

22

Dynamic Dependence Analysis

Application code:

1  FPGA_F1(A, B)
2  FPGA_F2(B, C)
3  FPGA_F3(X, Y)
4  File.write(C)
5  File.write(Y)

Function Queue

FPGA_F1(A, B)
FPGA_F2(B, C)

FPGA_F3(X, Y)

2 Coherent arrays used to establish
dependence chains

3 CPU functions trigger the entire chain that
produces the requested value

1 FPGA functions are placed on the queue
when called—not executed

P1

FPGA

23

2 Coherent arrays used to establish
dependence chains

Dynamic Dependence Analysis

Application code:

1  FPGA_F1(A, B)
2  FPGA_F2(B, C)
3  FPGA_F3(X, Y)
4  File.write(C)
5  File.write(Y)

Function Queue

FPGA_F1(A, B)
FPGA_F2(B, C)
FPGA_F3(X, Y)

3 CPU functions trigger the entire chain that
produces the requested value

1 FPGA functions are placed on the queue
when called—not executed

P1

P2

FPGA

24

Dynamic Dependence Analysis

Application code:

1  FPGA_F1(A, B)
2  FPGA_F2(B, C)
3  FPGA_F3(X, Y)
4  File.write(C)
5  File.write(Y)

Function Queue

FPGA_F3(X, Y)

FPGA

2 Coherent arrays used to establish
dependence chains

3 CPU functions trigger the entire chain that
produces the requested value

1 FPGA functions are placed on the queue
when called—not executed

P2

P1 FPGA_F1(A, B)
FPGA_F2(B, C)

C

25

Dynamic Dependence Analysis

Application code:

1  FPGA_F1(A, B)
2  FPGA_F2(B, C)
3  FPGA_F3(X, Y))
4  File.write(C)
5  File.write(Y)

Function Queue FPGA

2 Coherent arrays used to establish
dependence chains

3 CPU functions trigger the entire chain that
produces the requested value

1 FPGA functions are placed on the queue
when called—not executed

Y
P2 FPGA_F3(X, Y)

26

Dynafuse Challenges

3 Can the desired pipeline be created at
runtime?

•  Information for locality exploitation:

•  For pipeline fusion:

1 Which device memory has the most recent
copy of the data?

2 Which future functions need the output of the
current function?

27

FPGA

Fusion Network

•  All-to-all
network

•  Muxes
configured
by function
queue

Pipeline
for*F1

Mux

Fusion*NetworkFusion*Network

Memory*
Mapped*
Interface

F1*Out

N+1*Inputs

F1's*FCF1's*FC

GMM

...*

...

NA1*
Additional*
Muxes

NA1*
Additional*

Function*Cores

Memory*Controller

Mux*

Memory*
Mapped*
Interface

Mux*

Mem1*Out

Off*Chip*Memories

N+1*Inputs N+1*Inputs

Mem2*Out

28

•  Created 8 pipelined functions in VHDL
•  Wrote 2 SW applications in C++

•  Altera Stratix III E260 on Gidel ProcStar III
with PCIe x8

Image Segmentation 1080p:

1  RGB to HSV Conversion
2  HSV Threshold Filter
3  Morphological Erosion
4  Morphological Dilation
5  Sobel Edge Detection

Experiments

RGB to HSV Conversion
HSV Threshold Filter
Morphological Erosion
Morphological Dilation
Sobel Edge Detection

FFT Averaging Filter:

1  Fast Fourier Transform (FFT)
2  Frequency-domain Average
3  Inverse FFT

Fast Fourier Transform (FFT)
Frequency-domain Average
Inverse FFT

29

Dynafuse Results
Image segmentation:

30

Activity Execution Time (s) Speedup
No optimizations 0.2 -
w/ Locality Exploitation 0.12 1.6x
w/ Pipeline Fusion 0.04 5x

Activity Execution Time (s) Speedup
No optimizations 0.0042 -
w/ Locality Exploitation 0.0024 1.75x
w/ Pipeline Fusion 0.0014 3x

FFT Averaging Filter:

•  Fusion network overhead < 1% total area

Conclusions

•  Optimizations would benefit HLS
– Require dependence information

•  Transparent, dynamic approach
•  Pipeline fusion: Nx speedup for N

functions
•  Locality exploitation: save 2N-2

transactions
•  Future: dynamic fission study

31

Any Questions?
Thanks!

32

Sample Application

33

Regular code:

1  int* A = (int*)malloc(500);
2  int* B = (int*)malloc(500);
3  int* C = (int*)malloc(500);
4  for(i = 0; i < 500; i++) A[i] = i;
5  FPGA_F1(A, B);
6  Other_Functions();
7  FPGA_F2(B, C);
8  File.write(C);

Goal: Apply Locality Exploitation and Pipeline
Fusion Transparently

Sample Application

34

Dynafuse code:

1  Dynafuse context;
2  CoherentArray<int> A (500, context);
3  CoherentArray<int> B (500, context);
4  CoherentArray<int> C (500, context);
5  for(i = 0; i < 500; i++) A[i] = i;
6  FPGA_F1(A, B, context);
7  Other_Functions();
8  FPGA_F2(B, C, context);
9  File.write(C);

Regular code:

1  int* A = (int*)malloc(500);
2  int* B = (int*)malloc(500);
3  int* C = (int*)malloc(500);
4  for(i = 0; i < 500; i++) A[i] = i;
5  FPGA_F1(A, B);
6  Other_Functions();
7  FPGA_F2(B, C);
8  File.write(C);

Goal: Apply Locality Exploitation and Pipeline
Fusion Transparently

Dynamic Fusion

•  Execute an arbitrary number of arbitrarily
configured functions

F1 F2

F3 F5 F4

Memory
Interface

1

Memory
Interface

2

FPGA

35

Dynamic Fusion

•  Execute an arbitrary number of arbitrarily
configured functions

F1 F2

F3 F5 F4

Memory
Interface

1

Memory
Interface

2

FPGA

36

