k.

Dynafuse: Dynamic Dependence
Analysis for FPGA Pipeline Fusion and
Locality Optimizations

Jeremy Fowers, Greg Stitt
University of Florida
Department of Electrical and Computer Engineering

y

Dynafuse Optimization

* High-level synthesis (HLS) useful for FPGA
productivity

« Generally unaware of data dependencies
— Unnecessary PCle transfers and missed parallelism

Application code:
void f(int *a, int *b, int *c) {

*a = f1();
*b = f2();
*c = 13();
f4(a);

}

Dynafuse Optimization

* Result: pessimistic data management

Application code:

F1(/*in*/ A, [*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, [*out*/ C)

Dynafuse Optimization

* Result: pessimistic data management

Application code:

F1(/*in*/ A, [*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, [*out*/ C)

Locality Exploitation

 PCle bus is inefficient
— Up to 65% of total execution time

FPGA boards often have multiple DDR RAMs

Application code:

F1(/*in*/ A, [*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, /[*out*/ C)

Locality Exploitation

 PCle bus is inefficient
— Up to 65% of total execution time

FPGA boards often have multiple DDR RAMs

Application code:

FA1(/*in*/ A, [*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, /[*out*/ C)

o Saves 2N-2 transfers for N functions, 2 in this case

Pipeline Fusion

 Many FPGA functions are pipelined

* Fuse dependent functions into single
pipeline

Application code:

F1(/*in*/ A, [*out*/ B)
Other_CPU_Funtions()
F2(/*in*/ B, [*out*/ C)

* Fusing N pipelines creates Nx speedup

Dynafuse Overview

* The Dynafuse optimizations:
— Locality Exploitation and Pipeline Fusion
— Automatic & transparent

 SW: Dynamic Dependence Analysis

— Coherent Arrays
— Function Queue

 HW: Fusion Network

Dynafuse Challenges

* Information for locality exploitation:

Which device memory has the most recent
copy of the data?

Coherent Arrays

« Std arrays have locality, alias issues
* Resolved by Coherent Arrays

Int[] data

Coherent Arrays

« Std arrays have locality, alias issues
* Resolved by Coherent Arrays

Private int
Location

Operator FPGA

[]and * Int[] data

Private int
ID

Overloading Interface

Data management

@ All data starts on the CPU

Coherent array does not immediately return
output

@ Reads/writes ensure locality before returning

Application code:

CoherentA A
CoherentArray B
CoherentArray C
FPGA F1(A, B)
Other_Functions()
FPGA F2(B, C)
File.write(C)

Data management

@ All data starts on the CPU

Coherent array does not immediately return
output

@ Reads/writes ensure locality before returning

Application code:

CoherentArrav A
CoherentA B
CoherentA v
FPGA F1(A, B)
Other_Functions()
FPGA F2(B, C)
File.write(C)

Data management

@ All data starts on the CPU

Coherent array does not immediately return
output

@ Reads/writes ensure locality before returning

Application code:

CoherentArray A
CoherentArray B
CoherentArray C
FPGA_F1(A, B)
Other_Functions()
FPGA F2(B, C)
File.write(C)

Data management

@ All data starts on the CPU

Coherent array does not immediately return
output

@ Reads/writes ensure locality before returning

Application code:

CoherentArray A
CoherentArray B
CoherentArray C
FPGA _F1(A, B)
Other_Functions()
FPGA _F2(B, C)
File.write(C)

Data management

@ All data starts on the CPU

Coherent array does not immediately return
output

@ Reads/writes ensure locality before returning

Application code:

CoherentArray A
CoherentArray B
CoherentArray C
FPGA F1(A, B)
Other_Functions()

File.write(C)

Data management

@ All data starts on the CPU

Coherent array does not immediately return
output

@ Reads/writes ensure locality before returning

Application code:

CoherentArray A
CoherentArray B
CoherentArray C
FPGA F1(A, B)
Other_Functions()
FPGA F2(B, C)
File.write(C)

Data management

@ All data starts on the CPU

Coherent array does not immediately return
output

@ Reads/writes ensure locality before returning

Application code:

ConerentAray A I

CoherentArray B 5sary Pule transiers

CoherentArray C e date
FPGA_F1(A, B)

FPGA_F2(B, C)

File.write(C)

Dynafuse Challenges

* Information for locality exploitation:

Which device memory has the most recent
copy of the data?

* For pipeline fusion:

Which future functions need the output of the
current function?

Dynamic Dependence Analysis

FPGA functions are placed on the queue
when called—not executed

Coherent arrays used to establish
dependence chains

CPU functions trigger the entire chain that
produces the requested value

Application code: Function Queue

FPGA_F1(A, B) I+ P1
FPGA_F2(B, C)

FPGA_F3(X, Y)

File.write(C)

File.write(Y)

Dynamic Dependence Analysis

FPGA functions are placed on the queue
when called—not executed

Coherent arrays used to establish
dependence chains

CPU functions trigger the entire chain that
produces the requested value

Application code: Function Queue

FPGA F1(A. B) FPGA_F1(A, B)}- P1
FPGA F2(B, C)

FPGA F3(X, Y)

File.write(C)

File.write(Y)

Dynamic Dependence Analysis

FPGA functions are placed on the queue
when called—not executed

Coherent arrays used to establish
dependence chains

CPU functions trigger the entire chain that
produces the requested value

Application code: Function Queue

FPGA_F1(A, B) FPGA_F1 (A,%} P
FPGA F2(B, C) FPGA_F2(B,

FPGA F3(X,Y)

File.write(C)

File.write(Y)

Dynamic Dependence Analysis

FPGA functions are placed on the queue
when called—not executed

Coherent arrays used to establish
dependence chains

CPU functions trigger the entire chain that
produces the requested value

Application code: Function Queue

FPGA_F1(A, B) FPGA_F1(A,B) | o,
FPGA F2(B.C) FPGA_F2(B, C)
FPGA F3(X,Y)

File.write(C)

File.write(Y)

Dynamic Dependence Analysis

FPGA functions are placed on the queue
when called—not executed

Coherent arrays used to establish
dependence chains

CPU functions trigger the entire chain that
produces the requested value

Application code: Function Queue

FPGA_F1(A, B) FPGA_F1 (A,@ P1
FPGA F2(B, C) FPGA_F2(B,
FPGA_F3(X,Y) FPGA_F3(X, Y) }-
File.write(C)

File.write(Y)

P2

Dynamic Dependence Analysis

FPGA functions are placed on the queue
when called—not executed

Coherent arrays used to establish
dependence chains

CPU functions trigger the entire chain that
produces the requested value

Application code: Function Queue

FPGA_F1(A, B) FPGA_F1(A,B) | p,
FPGA_F2(B, C) FPGA_F2(B, C
FPGA_F3(X,Y) FPGA_F3(X, Y) }- P2
File.write (&)

File.write(Y)

Dynamic Dependence Analysis

FPGA functions are placed on the queue
when called—not executed

Coherent arrays used to establish
dependence chains

CPU functions trigger the entire chain that
produces the requested value

Application code: Function Queue

FPGA F1(A, B)

FPGA F2(B, C)

FPGA_F3(X,Y) FPGA_F3(X, Y) }- P2
File.write(C)

File.write ()

Dynafuse Challenges

* Information for locality exploitation:

Which device memory has the most recent
copy of the data?

* For pipeline fusion:

Which future functions need the output of the
current function?

Can the desired pipeline be created at
runtime?

Fusion Network

o All-to-all
network

e Muxes oy
configured
by function
queus N

|

Memory
Mapped Mapped
Interface Interface

Experiments

» Created 8 pipelined functions in VHDL
* Wrote 2 SW applications in C++

Image Segmentation 1080p:

FFT Averaging Filter:
RGE to HSV Conversion
FISV Threshola Filter 1
Morphologicz! | rosion
Morphologicz! Dilation 3
Sobel BEdpe Detection

Altera Stratix |l E260 on Gidel ProcStar ||
with PCle x8

Dynafuse Results

Image segmentation:

Activity Execution Time (s)
No optimizations 0.2
w/ Locality Exploitation 0.12
w/ Pipeline Fusion 0.04

FFT Averaging Filter:

Activity Execution Time (s)
No optimizations 0.0042
w/ Locality Exploitation 0.0024
w/ Pipeline Fusion 0.0014

 Fusion network overhead < 1% total area

Conclusions

» Optimizations would benefit HLS
— Require dependence information

Transparent, dynamic approach

Pipeline fusion: Nx speedup for N
functions

Locality exploitation: save 2N-2
transactions

Future: dynamic fission study

Thanks!

Any Questions?

Sample Application

Goal: Apply Locality Exploitation and Pipeline
Fusion Transparently

Regular code:

Int® A = (int*)malloc(500);
int* B = (int*)malloc(500);
int* C = (int*)malloc(500);
for(i = 0; 1 < 500; i++) A[i] = 1;
FPGA F1(A, B);
Other_Functions();
FPGA_F2(B, C);
File.write(C);

1
2
3
4
)
6
7
8

Sample Application

Goal: Apply Locality Exploitation and Pipeline
Fusion Transparently

Dynafuse code:
Regular code:

1 Dynafuse context;
Int™ A = (int")malloc(500); 2 CoherentArray<int> A (500, context);
int* B = (int*)malloc(500); I 3 CoherentArray<int> B (500, context);
int* C = (int*)malloc(500); 4 CoherentArray<int> C (500, context);
for(i = 0; 1< 500; i++) A[i] = 1; for(i = 0; i < 500; i++) A[i] = i;
FPGA _F1(A, B); FPGA F1(A, B, context);
Other_Functions(); Other_Functions();
FPGA_F2(B, C); FPGA F2(B, C, context);
File.write(C); File.write(C);

1
2
3
4
)
6
7
8

Dynamic Fusion

« Execute an arbitrary number of arbitrarily
configured functions

FPGA

Memory Memory

Interface Interface
1 2

Dynamic Fusion

« Execute an arbitrary number of arbitrarily
configured functions

FPGA

Memory Memory

Interface Interface
1 2

