C-to-CoRAM: Compiling Perfect
Loop Nests to the Portable
CoRAM Abstraction

Gabriel Weisz and James C. Hoe

M Computer Architecture Lab at
Carnegie Mellon

©)CALCM computer Architecture Lab i Carnegie Mellon

Compiling loop nests to software

Matrix-matrix multiply

for (i= ...
for (j=...
for(k=...
CliGI+=Al][K]*BlK][]

Software compilers can find parallelism and
data reuse in loop nests

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon

Compiling loop nests to hardware

for (i= ...
for (j=...
for(k=...
Cliji]+=AldIK]"BIKIL]

FPGA ‘13 / Gabriel Weisz

Focus on transporting data and
optimizing for DRAM bandwidth
through customized streaming buffers
and an abstract data transport interface

Target loop nests containing:

* Implicit parallelism and data reuse
« Statically determined control flow

* Direct or indirect memory accesses

Carnegie Mellon

Control
Threads

Processing
Elements

For more information:
[Chung, et al., 2011]
www.ece.cmu.edu/~coram

FPGA ‘13 / Gabriel Weisz 4

©@)CALCNM computer Architecture Lab Carnegie Mellon

Contributions

for (i= ... « Targets a data-oriented abstraction for FPGA
f‘};?(;: computing supporting multiple devices

CLlil+=AlKI*BIKI] | ® Compiles frpm loop negt codg to an
l optimized bit-stream with a single command

 Individually optimize each data stream for
- bandwidth and reuse

Control = i
mveads (L3 (2) e
¥
DRAM

Compiled hardware comparable in structure and
performance with hand-tuned

FPGA ‘13 / Gabriel Weisz 5

Carnegie Mellon

Outline

* Compilation Process
e Evaluation
* Conclusions

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon

C-to-CoRAM overview

for (i= ...
for (j=...
for(k=...
Cliji]+=AldIK]"BIKIL]

!

C-to-CoRAM uses LLVM tools to target

CoRAM from loop nests by:

 Decomposing code into compute and
control

« Refactoring the loop nest for parallelism

« Customizing stream buffers to optimize
for memory bandwidth and data reuse

Control = i
mveads (L1 E o1) oo
¥
DRAM

FPGA ‘13 / Gabriel Weisz

LLVM: [www.llvm.org]

7

©)CALCM computer Architecture Lab i Carnegie Mellon

Extract Computation

Trace values back
from data stored to

for (i= ... <~ memory
for (j=...
for(k=... / g A
Cli]i]+=Al][k]"B[k][] {‘&E@
_ J
Generate kernel pipelines

using ROCCC
[www.jacquardcomputing.com]

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon

Streaming loop nest code

for (i= ...
for (j=...
fOr(k=. .. —Eef)
GET A[i][k] ——lllil-> {%@ —> i
GET BI[k][j] —ilil>

GET CIi][j]
PUT CI[i][j] -

FPGA ‘13 / Gabriel Weisz

©)CALCM computer Architecture Lab

for (i= ...
for (j=...
for(k=...
GET A[i][k]

Generate a thread for each stream

for (i= ...
for (j=...
for(k=...
GET BIK][j]

for (i= ...
for (j=...
for(k=...
GET CJi][j]
READ SYNC

for (i= ...
for (j=...
for(k=...
PUT CJi][j]
WRITE SYNC

Synchronization due to the feedback loop

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon

10

Carnegie Mellon

Trace array accesses

DRAM

for (j=...
for(k=...
GET Ci[i] ——
READ SYNC

Address traces used to
optimize for parallelism
and data reuse

FPGA ‘13 / Gabriel Weisz 11

Carnegie Mellon

Refactor for parallelism

for (i= ...
for (j=...
for(k=...
GET CJi][j]

\

Write and read of same
variable prevents parallel
execution

FPGA ‘13 / Gabriel Weisz 12

Carnegie Mellon

Refactor for parallelism

for (j=...

GET CI[i][j] ’

FPGA ‘13 / Gabriel Weisz

‘ for(j=...
GET CJi][j]
for (i= ...

Parallel kernel
pipelines

Fully unroll
Inner loop

aer o [e

13

©)CALCM computer Architecture Lab | Carnegie Mellon

Cache repeated data
DRAM

for (k=...

for (i=... A
for(j=...
GET A[i][k]

NN

FPGA ‘13 / Gabriel Weisz 14

©)CALCM computer Architecture Lab i Carnegie Mellon

Cache repeated data

DRAM
for (k=...
for (i=...
GET A[i][k]
H— ﬂ
Stream buffer sends l
repeated data to
Kernels .
o

FPGA ‘13 / Gabriel Weisz 15

©)CALCM computer Architecture Lab

Optimize Accumulated data

for (k=...
for (i=...
for (j=...
GET CJi][j]
READ SYNC

FPGA ‘13 / Gabriel Weisz

for (k=...
for (i=...
for (j=...
PUT C[i][j]
WRITE SYNC

Carnegie Mellon

16

©)CALCNM computer Architecture Lab

Carnegie Mellon

Optimize Accumulated data

for (i=...
for (j=...

GET CI[i][j]

FPGA ‘13 / Gabriel Weisz

for (i=...
for (j=...
PUT C[i][j]

17

Carnegie Mellon

Optimize Accumulated data

for (i=...
for (j=...
PUT C[i][j]

Constant > —>llll

FPGA ‘13 / Gabriel Weisz 18

Carnegie Mellon

Coalesce sequential transfers

for (k= ...

for (i=...

for(j=...
GET BI[k]|[j]

Data is consecutive in DRAM

FPGA ‘13 / Gabriel Weisz

DRAM

/

19

Carnegie Mellon

Coalesce sequential transfers

for (k= ...
for (i=...

GET ROW B[K]

DRAM

e Coalesce transfer
e Simplify thread

FPGA ‘13 / Gabriel Weisz

20

Carnegie Mellon

Optimize strided accesses

DRAM
1 4 7
2 5 3

51l 6 U o
Strided accesses /

FPGA ‘13 / Gabriel Weisz 21

©)CALCM computer Architecture Lab

Optimize strided accesses

DRAM

Transpose data in transit
Simplify thread

Coalesce transfers <

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon

22

1 Computer Architecture Lab - Carnegie Mellon

Optimize sliding windows
DRAM

FPGA ‘13 / Gabriel Weisz 23

Carnegie Mellon

Optimize sliding windows

DRAM
e Buffer data
 Coalesce transfers
* Simplify thread
Partially overlapping blocks/
[)

FPGA ‘13 / Gabriel Weisz 24

@) CALCNM computer Architecture Lab

 Evaluation
e Conclusions

FPGA ‘13 / Gabriel Weisz

Outline

Carnegie Mellon

25

Carnegie Mellon

Experimental configuration

* Experiments on two hardware platforms
a Xilinx ML605 - Xilinx Chip
o Terasic DE4 - Altera Chip

e Core logic at 100 MHz (limited by soft CoORAM)

* Loop nest computations:
a Single Precision Matrix-Matrix Multiply
a Single Precision 2D Convolution
a k-Nearest Neighbor

 Manually blocked implementations
* Source provided in paper

FPGA ‘13 / Gabriel Weisz 26

Block MMM on the ML605:

loop optimizations and block size

Peak throughput
for 64 adders/
multipliers

64x64 32x128 32x32 128x64

Interchanged (~83% logic, ~33% block memory)

% 12+

O

LL

© g

S

o

_C

I-E L

0

Block Size
I:I =
[] = Unrolled

(~83% logic, ~92% block memory)

Block shape matters more than loop optimization

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon

27

2D convolution on the ML605

®

Carnegie Mellon

Filter size % of Logic % of Block % of Performance - GFlop/s
Cells Memories DSPs (% peak)
5x5 58 24 22 4.4 (69)
13x13 60 26 22 6.4 (99)

Inherent data reuse affects performance

FPGA ‘13 / Gabriel Weisz

28

Carnegie Mellon

ML605 performance comparison

[Bao, et al., 2011] — Hand Tuned designs for the same board

Experiment C-To-CoRAM | Hand-tuned Difference
(Gflops/s) (Gflops/s)
Block MMM 12.6 50.4 4x SLOWER — Bao, et al. design has
2x kernels and 2x clock speed
2D Convolution 4.4 2.04 2x FASTER — even with half the
(5x5 filter) kernels and half the clock speed

Hardware generated from C-language code is
4x slower to 2x faster than hand-tuned

FPGA ‘13 / Gabriel Weisz 29

Carnegie Mellon

Alternate platform: DE4
Block Matrix-Matrix Multiply

Kernels NoC Performance
(GFlop/s)
64 Ring 12.6
128 Crossbar 25.4

Easy tuning to a larger platform

k-Nearest Neighbor

Memory Buffer % of Peak
Controllers | Depth Throughput
2 8 73
1 16 90

Design space exploration from the same code

FPGA ‘13 / Gabriel Weisz 30

Carnegie Mellon

Conclusions

 C-to-CoRAM is an end-to-end solution for
compiling from loop nests to optimized systems
on multiple platforms

* Compiled hardware is comparable to hand-tuned
realizations on the same platform

e Future Work:

a Integrate polyhedral optimizations
a Implement buffers for more data access patterns
o Support more computations

FPGA ‘13 / Gabriel Weisz 31

Acknowledgements

Funding for this work was provided in part by
the NSF and Altera

Thanks to Xilinx, Altera, and Bluespec for tools,
hardware, and support

This project used the LLVM compiler and the
ROCCC compiler from Jacquard Computing

Thanks to Eric Chung, Michael Papamichael,
and Yu Wang for technical assistance

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon

32

