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Compiling loop nests to software

Matrix-matrix multiply

for (i= ...
for (j=...
for(k=...
CliGI+=Al][K]*BlK][]

Software compilers can find parallelism and
data reuse in loop nests
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Compiling loop nests to hardware

for (i= ...
for (j=...
for(k=...
Cliji]+=AldIK]"BIKIL]
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Focus on transporting data and
optimizing for DRAM bandwidth
through customized streaming buffers
and an abstract data transport interface

Target loop nests containing:

* Implicit parallelism and data reuse
« Statically determined control flow

* Direct or indirect memory accesses
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Control
Threads

Processing
Elements

For more information:
[Chung, et al., 2011]
www.ece.cmu.edu/~coram
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Contributions

for (i= ... « Targets a data-oriented abstraction for FPGA
f‘};?(;: computing supporting multiple devices

CLlil+=AlKI*BIKI] | ® Compiles frpm loop negt codg to an
l optimized bit-stream with a single command

 Individually optimize each data stream for
- bandwidth and reuse

Control = i
mveads (L3 (2 ) e
¥
DRAM

Compiled hardware comparable in structure and
performance with hand-tuned
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Outline

* Compilation Process
e Evaluation
* Conclusions
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C-to-CoRAM overview

for (i= ...
for (j=...
for(k=...
Cliji]+=AldIK]"BIKIL]

!

C-to-CoRAM uses LLVM tools to target

CoRAM from loop nests by:

 Decomposing code into compute and
control

« Refactoring the loop nest for parallelism

« Customizing stream buffers to optimize
for memory bandwidth and data reuse

Control = i
mveads (L1 E o1 ) oo
¥
DRAM

FPGA ‘13 / Gabriel Weisz

LLVM: [www.llvm.org]
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Extract Computation

Trace values back
from data stored to

for (i= ... <~ memory
for (j=...
for(k=... / g A
Cli]i]+=Al][k]"B[k][] {‘&E@
\_ J
Generate kernel pipelines

using ROCCC
[www.jacquardcomputing.com]
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Streaming loop nest code

for (i= ...
for (j=...
fOr(k=. .. —Eef )
GET A[i][k] ——lllil-> {%@ —> i
GET BI[k][j] —ilil>

GET CIi][j]
PUT CI[i][j] -
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for (i= ...
for (j=...
for(k=...
GET A[i][k]

Generate a thread for each stream

for (i= ...
for (j=...
for(k=...
GET BIK][j]

for (i= ...
for (j=...
for(k=...
GET CJi][j]
READ SYNC

for (i= ...
for (j=...
for(k=...
PUT CJi][j]
WRITE SYNC

Synchronization due to the feedback loop

FPGA ‘13 / Gabriel Weisz
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Trace array accesses

DRAM

for (j=...
for(k=...
GET Ci[i] ——
READ SYNC

Address traces used to
optimize for parallelism
and data reuse
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Refactor for parallelism

for (i= ...
for (j=...
for(k=...
GET CJi][j]

\

Write and read of same
variable prevents parallel
execution
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Refactor for parallelism

for (j=...

GET CI[i][j] ’
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‘ for(j=...
GET CJi][j]
for (i= ...

Parallel kernel
pipelines

Fully unroll
Inner loop

aer o [ e
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Cache repeated data
DRAM

for (k=...

for (i=... A
for(j=...
GET A[i][k]

NN
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Cache repeated data

DRAM
for (k=...
for (i=...
GET A[i][k]
H— ﬂ
Stream buffer sends l
repeated data to
Kernels .
o
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Optimize Accumulated data

for (k=...
for (i=...
for (j=...
GET CJi][j]
READ SYNC

FPGA ‘13 / Gabriel Weisz

for (k=...
for (i=...
for (j=...
PUT C[i][j]
WRITE SYNC

Carnegie Mellon
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Optimize Accumulated data

for (i=...
for (j=...

GET CI[i][j]
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for (i=...
for (j=...
PUT C[i][j]
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Optimize Accumulated data

for (i=...
for (j=...
PUT C[i][j]

Constant > —>llll
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Coalesce sequential transfers

for (k= ...

for (i=...

for(j=...
GET BI[k]|[j]

Data is consecutive in DRAM

FPGA ‘13 / Gabriel Weisz

DRAM

/
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Coalesce sequential transfers

for (k= ...
for (i=...

GET ROW B[K]

DRAM

e Coalesce transfer
e Simplify thread

FPGA ‘13 / Gabriel Weisz
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Optimize strided accesses

DRAM
1 4 7
2 5 3

51l 6 U o
Strided accesses /
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Optimize strided accesses

DRAM

Transpose data in transit
Simplify thread

Coalesce transfers <

FPGA ‘13 / Gabriel Weisz

Carnegie Mellon
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Optimize sliding windows
DRAM
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Optimize sliding windows

DRAM
e Buffer data
 Coalesce transfers
* Simplify thread
Partially overlapping blocks/
[ )
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 Evaluation
e Conclusions

FPGA ‘13 / Gabriel Weisz

Outline

Carnegie Mellon
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Experimental configuration

* Experiments on two hardware platforms
a Xilinx ML605 - Xilinx Chip
o Terasic DE4 - Altera Chip

e Core logic at 100 MHz (limited by soft CoORAM)

* Loop nest computations:
a Single Precision Matrix-Matrix Multiply
a Single Precision 2D Convolution
a k-Nearest Neighbor

 Manually blocked implementations
* Source provided in paper
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Block MMM on the ML605:

loop optimizations and block size

Peak throughput
for 64 adders/
multipliers

64x64 32x128 32x32 128x64

Interchanged (~83% logic, ~33% block memory)

% 12+

O

LL

© g

S

o
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I-E L

0

Block Size
I:I =
[ ] = Unrolled

(~83% logic, ~92% block memory)

Block shape matters more than loop optimization
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2D convolution on the ML605

®

Carnegie Mellon

Filter size % of Logic % of Block % of Performance - GFlop/s
Cells Memories DSPs (% peak)
5x5 58 24 22 4.4 (69)
13x13 60 26 22 6.4 (99)

Inherent data reuse affects performance

FPGA ‘13 / Gabriel Weisz
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ML605 performance comparison

[Bao, et al., 2011] — Hand Tuned designs for the same board

Experiment C-To-CoRAM | Hand-tuned Difference
(Gflops/s) (Gflops/s)
Block MMM 12.6 50.4 4x SLOWER — Bao, et al. design has
2x kernels and 2x clock speed
2D Convolution 4.4 2.04 2x FASTER — even with half the
(5x5 filter) kernels and half the clock speed

Hardware generated from C-language code is
4x slower to 2x faster than hand-tuned
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Alternate platform: DE4
Block Matrix-Matrix Multiply

Kernels NoC Performance
(GFlop/s)
64 Ring 12.6
128 Crossbar 25.4

Easy tuning to a larger platform

k-Nearest Neighbor

Memory Buffer % of Peak
Controllers | Depth Throughput
2 8 73
1 16 90

Design space exploration from the same code
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Conclusions

 C-to-CoRAM is an end-to-end solution for
compiling from loop nests to optimized systems
on multiple platforms

* Compiled hardware is comparable to hand-tuned
realizations on the same platform

e Future Work:

a Integrate polyhedral optimizations
a Implement buffers for more data access patterns
o Support more computations

FPGA ‘13 / Gabriel Weisz 31
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