An FPGA Based Parallel Architecture
for Music Melody Matching

Hao Wang and Jyh-Charn Liu

Computer Science and Engineering,
Texas A&M University

Outline

Background

Modeling of MIDI database
Modeling of user query
Approximate matching algorithm
System architecture

Evaluation

Background

Explosive growth of music works

Retrieval systems based on exact text
metadata provide poor user experience

Retrieval via acoustic signature (melody) is
more natural and user friendly

Problem Definition

* The system aims to match the user humming/singing input
against monophonic ground truth MIDI files, and find the

most acoustically similar results.

— Userinput is modeled as regular expressions (regexp)
— MIDI files are modeled as strings

 The problem can then be modeled as approximate regular
expression matching, where the similarity measure between a
string and regexp is their edit distance.

Approx
MIDI 1 ll:\,> String 1 | matching distance 1 | Reorder

: TOP 1
Us t:
MIDI 2 == String 2 > = > distance 2 :(> :
. . Regular : =
’ ' Expression |

MIDI n :> String n distance n el

Outline

Background
Modeling of MIDI database

Modeling of user query
Approximate matching algorithm
System architecture

Evaluation

Modeling of MIDI File

* MIDI format specifies sheet music

* The software tool MIDICSV™ can parse MIDI
file into comma separated values.

* Using ASCII characters to denote pitch, and
using 0.1 second as the unit time interval, we
can model MIDI into string.

* http://www.fourmilab.ch/webtools/midicsv/

Modeling of MIDI File

Sheet music

&3

AN § |

e, ¥ " g

Happ -y bith-day to you

ASCII symbols for pitch values

<LK LS >>>>><<<K<KAAAAAA@ @

@EEQPEE@EPE@@

-

-

CSV format
Time Event Value
0 Header 480
0 Tempo | 600000
960 Note on 60
1320 Note off
1320 Note on 60
1440 Note off
1440 Note on 62
1920 Note off
1920 Note on 60
2400 Note off
2400 Note on 65
2880 Note off
2880 Note on 64
3840 Note off

Outline

* Background
* Modeling of MIDI database
 Modeling of user query

* Approximate matching algorithm
e System architecture
* Evaluation

Modeling of User Query

* Original user input WAV file

Estimate the fundamental frequency f, using
YIN* algorithm

* Convert to MIDI pitches by

/i
p=69+12 X log, (440°Hz)

*http://audition.ens.fr/adc/sw/yin.zip

Modeling of User Query

* Using ASCII characters to denote pitch, and
use 0.1 second as the unit time interval, we

can model user query into string.

* To ease later discussion of tempo variation, we
group consecutive pitches that share the same
value into a note.

Modeling of User Query

* Key transposition support is a must

— Adjust user query to the average pitch of MIDI being
compared

— Augment user query “key” up & down by 4: a total of
9 queries to represent a user input

e Duration (tempo) variation

— Make the note’s duration elastic: ranging from a half
to twice of its original duration, by using the
constraint repetition feature of regular expressions

— Any match in the duration is a match

From User Humming to Regexp

An original query string from YIN-MIDICVS:
<LLLKL LS >>>>><KKLKKAAAAAA@ @ @

QRE@PE@E@@@

Note clustering

<{6} ® >{6} * <{6} * A{6} » @{12} CCR
Tempo-relaxed ﬂ
<{3,12} ¢ >{3,12} ¢ <{3,12} » A{3,12} « @{6,24}
Denoted as CCR, ® CCR, ® CCR, » CCR, * CCR.

Parameter Tuning: unit time

Retrieval Accuracy

09

08

0.7F

06

05F

04F

03F

02F

01F

Accuracy vs. Unit Time

50

100
Unit Time (milliseconds)

150

200

Parameter tuning: key shift range

Accuracy vs. Key Shift Range

1
09 _____-(:_:.— ::: |
'.:3,________
0.8 _ ..,..,..........;L_ —
0.7} ; -
=
£ o6l) -
o //
< o0s5f) —
g .
N —
o /
03¢~ -
02l —
01l _
0 | l l l l
0 1 2 | 4 5 6

Key Shift Range

Outline

Background

Modeling of MIDI database
Modeling of user query
Approximate matching algorithm

System architecture
Evaluation

Approximate Matching Algorithm

* Classical dynamic programming algorithm
based on a modified EDIT distance

— Only consider substitution

— No insertion/deletion:
* Implicitly embedded into constraint repetition

* They also introduce inter-state dependency during
updates

State Transition Diagram

* CCR,:<{3,12}

CCR, : >{3,12}

MIDI string

.

:

f

1

Ollc,- < 1 3 12 0 _
CCRYlo- <l CCRj .1 CCR7 _ ICCR7 | CCRZac=l
eds k=0 eds 14 edqy i ed sy, x edzok

1 A

MIN I

Initial Non-qualifying { Qualifying | :

sub-state sub-states sub-states I I
CCR; e CCR;

User
humming
regexp

e All CCR sub-states match every input symbol independently.
 The MIN function calculates the local minimal matching of a CCR
* Substitution edit can be implemented by non-blocking assignment

Unitization of Constraint Repetitions

* Different constraint repetitions of CCRs lead to
different execution path and processing time
of MIN function

— Make synchronization/parallelization inefficient
* Note that the upper bound of the constraint
repetition is always 4 times the lower bound

— Use {1,4} as an atomic constraint repetition to re-
represent notes

Unitization of Constraint Repetitions

<{3,12} ¢ >{3,12} # <{3,12} e A{3,12} » @{6,24}

!

<{1,4} e <{1,4} ¢ <{1,4} @ >{1,4} ¢ >{1,4} ¢ >{1,4}
e <{1,4} e<{1,4} ¢ <{1,4} ¢ A{1,4} ¢ A{1,4} e
A{l,4} e @{1,4} e @{1,4} * @{1, 4} » @{1, 4}
. @{1,4}* @11, 4) 1

A-CCR

Outline

Background

Modeling of MIDI database
Modeling of user query
Approximate matching algorithm
System architecture

Evaluation

Atomic CCR (A-CCR) Engine

Parameters| | + | + | + >
@,—: acceptable pitch) Ci: index of current engine) @: index of final engine)
Input Char _ |ck_pl-|
Cyx »
| A\ 4 A\ 4
A 4 A 4 A 4 s
+ + + + equad
A A A
ed; ok ed 1k ed; 2 ed; 3 ed; 4x
Predecessor | 1h g D Q D Qa D Qa D Q-
Q Q Q Q Q
\4 \ 4
MIN
]
reset
clk <—(curr_min;: minimum of edi 1k, edizk, ediax and edi 4k of current cycle]—» \{
> = _Euccessor
= MUX
4—(overall_min;i. minimum of curr_min; of all cycles]—»

Melody Matching Engine

Concatenated together, an array of ACCR modules implement a melody matching

engine

[DDR2 memory] MIDI database

Y

Y

ACCR4
Engine

ACCR,
Engine

FIFO
ACCR;

Index of final

y

» ot Engin91 USEF hummlng
\ 4 I

ACCR ™~

MUX /

l Final
result

FIFO addresses cross-clock-domain issues
Modular architecture, self-contained, highly scalable

System Integration and Flow Chart

Initialization: —} Strings

Matching:

Reporting:

User
Query

F} Regexp

Parameters

Y
SIRC parameter > ACCR;
| Buffer

Results
Display

esults
Arra

| L
Buffer FPGA

b e e e e e o o o — o — — — — — — — —]

SIRC: http://research.microsoft.com/apps/pubs/default.aspx?id=121293/

Outline

Background

Modeling of MIDI database
Modeling of user query
Approximate matching algorithm
System architecture

Evaluation

Evaluation: some facts

The database has 5,569 MIDI files of Chinese pop songs and

European folk songs. The generated text MIDI database is
1.62 MB in size.

The user input usually has less than 100 ACCRs.
— 9 variants are generated to handle key transposition

The XUPVS5 Virtex 5 FPGA can hold 300 ACCR engines at the
utilization ratio of 87%.

— It can process 3 variants of the user input at a time, takes 3
rounds to process all variants.

The melody matching engine runs at 100 Mhz.
— Long combinational logic paths (in MIN function)
— Large MUX (100 8-bit inputs)
— Long data path (FIFO — ACCR — MUX — Output BRAM)

Evaluation: runtime

355 user humming queries (IOACAS data set), starting from
anywhere in the song, not necessarily from the beginning.

Theoretical runtime
— 1.62MB *9 /3 / 100MHz = 48.6 ms/query

Database size * 9 variants/3-variants per round, at clock rate of 100Mhz

The measured runtime,

355 queries a single query (avg.)
runtime 19.4 seconds 54.6 milliseconds

reflects the additional time for parameter downloading and
results reporting

One time implementation cost

Implementation Step Run Time
Synthesis 19 minutes

Map 2 hours and 15 minutes

Place & Route 6 hours and 19 minutes

Comparison

Method Platform Runtime | Accuracy | Speedup
CSJ2 [1]| Dual Intel Xeon Quad Core @ | 210 min| 86% | 649X
2.0 GHz with 24 GB memory
HAFR1 | Dual AMD Opteron Quad Core | 247 min | 80.6% | 764X
2] @ 2.0 GHz with 32 GB memory
YF2[2]| Intel Core2Quad Core@ |367 min| 90.4% | 1135X
2.40GHz with 8GB memory
MME |XUPVS FPGA @ 100MHz with| 19.4 sec | 90.7% -
256 MB memory

http://www.midomi.com/, a commercial query-by-humming

engine. Algorithm unpublished, platform unknown, matching
accuracy and runtime comparable to MME.

[1] http://www.music-ir.org/mirex/wiki/2009:Query-by-Singing/Humming Results

[2] http://www.music-ir.org/mirex/wiki/2010:Query-by-Singing/Humming Results

Summary

* Key factors to achieve excellent combination
of matching performance, power, and speed

— CCR based modeling of the underlying structures
of the problem

— Parallel algorithm

— FPGA technology
— Parameterization and unification of ACCR engines

 We are expanding the CCR model to explore
the relationship between CCR, DTW, and

HMM

Thank you!

