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Evolving Internet

* High-speed packet forwarding
— Growing network/application demands

— 10/40 Gbps = 100/400 Gbps
— E.g. NTT Communications 600 Gbps link Japan-USA

* Network management PSSR T
—  Flow prioritization ' “";R:OOLS ey I
— Traffic shaping 2 on wone rensons (1
— Traffic policing Nz Based on
___ | accurate
traffic

* Network security
—  Filter/block network traffic/attacks ) ‘

— Application level security
—  Firewalls, access control lists, etc. >
—

classification
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Traffic Classification at Flow Level (1)

* Determine the application protocol of a traffic flow by inspecting its content.

— Traffic flow:
A series of packets sharing the same 5 tuple information within a time window

— 5 tuple information:
{Source IP, Destination IP, IP Protocol, Source Port, Destination Port}
For example the 5 tuple information of an HTTP packet:

262.154.23.2 115.114.35.63 TCP 11689 80

— What content to inspect?
= Header information
= Packet payloads
= Connection patterns
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Traffic Classification at Flow Level (2)

* Existing techniques

— Payload based
x Encrypted payload

* |nspect application layer payload

—  Port number based

L x Dynamic port assignment
® |nspect source and destination port numbers

— Heuristic based x Low accuracy & large memory
w u .
= |nspect connection patterns y requirement

— Machine learning based O Accurate & robust

® |nspect statistical properties of flows
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Machine Learning based Traffic Classification

» Uses statistical properties of the application protocol
— Statistical properties are referred to as “flow features”
—  Max./Min./Avg. packet size/packet inter-arrival time
—  Port numbers, ...

» Off-line training + On-line classification

* Highly accurate if
— The training data is accurate
— Proper features are used

* (4.5 Decision tree
—  Well know machine learning technique

— Highly accurate with various target applications, test traces, and experimental
setups in the previous works
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Problem Definition

* Design a C4.5 decision tree based traffic classifier on FPGA
— Assumption: a preceding system will compute the feature vector
— Input: feature vectors of the flow
— Output: application protocol of the input flow

* G@Goals
— High accuracy:
= >90% true positive rate

Feature selection using
Internet traces from major ISP

Deep pipelining &

— High th hput:
Igh throughpu multi-threaded design

= >400 Gbps

—  Programmability:
= Support various C4.5 models

Programmable memory structure

Tttt
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Main Contributions

* |dentified appropriate features for high accuracy traffic classification
— Can classify traffic traces consisting of 8 major application protocols
— Empirically optimized feature set
— 97.92% overall true positive rate

* Designed programmable architecture
— Programmable memory structure
— Extensible to handle updates for decision tree model at run-time

* Designed high throughput architectures on state of the art FPGA

— 550 Gbps for Dist. RAM based pipelined design
— 449 Gbps for Block RAM based multi-threaded design
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Feature Selection (1)

e Criterion for candidate feature

High discriminative power
Low computational cost
Early classification

e (Candidate features

USC

IP protocol

Src. port number Classic features

Dst. port number

Sizes of the first N packets

Avg./Max./Min. packet size of the first N packets
Var. of packet size of the first N packets

N=1,23,..38
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7

University of Southern California



Feature Selection (2)

Methodology

Combine candidate features to construct feature sets

97.92%
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Number of Packets Considered

Construct C4.5 decision trees using different feature sets

Compare their accuracy over all the applications
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Feature Selection (3)

 The empirically optimized feature set
— For a mixed traffic trace consisting of 8 application protocols
— Classic features: IP protocol, src. port number, and dst. port number
— Statistical features: avg., max., and min. packet size of the first 4 data packets

 Both classic and statistical features are necessary
— Classic features distinguish classic applications
= Loss of over 10% accuracy if not included

— Statistical features distinguish P2P applications
= Loss of over 1% - 8% accuracy in classifying P2P applications if not included

e Variance is excluded due to high computational cost

— Loss of only ~0.1% overall accuracy
— High logic and storage requirement due to square operation
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Programmable Architecture

Protocol =
tcp?

Source port
number =
0001012

Leaf Node O Non-Leaf Node
* Node data 2 memory structure
— Data can be reprogrammed to support various tree models

* Operation =2 logic
— No compilation needed when model changes

* Able to support various C4.5 models
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Input
Feature
Vector

High Throughput Architecture

Discretizer

Discretized Discretized Discretized
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Localized distributed RAM
— Distributed RAM block is close to its processing element
— Low routing requirement = High clock rate

Deep pipelining
— Classic approach to achieve high throughput
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Multi-threaded Architecture

feature vector,

block RAM

input address

current node

mput address_

Processing Element

classified

N
”~

Continue classifying
current feature vector
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e Localized PE

— PEis close to BRAM—> Low routing requirement = High Clock Rate

— Highly scalable
Multi-threaded parallelism

— Could be a good approach if memory requirement is small
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Implementation

e Xilinx Virtex 6 VLX760

* Dual-port RAM on FPGA
— Each RAM block serves two pipeline stages/threads

* Deep pipeline design & multi-threaded design
— Explore both type of parallelism to achieve high throughput
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Throughput

e Classifier model
— Most accurate model using the empirically optimized feature set
— 43 |evels
— No more than 6 nodes per level

* High throughput design
—  Clock rate: 215 MHz
— 1 flow/cycle, 4 packets/flow, 40 bytes/packet

— Throughput: 550 Gbps

* Multi-threaded design
— Clock rate: 308 MHz
— 43 cycles/flow

—  Throughput: 6 Gbps/thread
— Highly scalable when the memory requirement is small
= For a tree of size 1024 nodes, 449 Gbps by using 160 threads
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Scalability of Multi-threaded Architecture

* Tree models of various sizes

— 380
I 360
2 340
e 300 .
§ 280 .
O 32 64 128 256 512 1024
Tree Size (# of nodes)
e Various number of threads
_ 360
T 340
2
I 320
& 300 l
S 280
O
o 4 8 16 32 64 160

Number of Threads
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Summary and Future Work

 What we have achieved
— Identified appropriate features for high accuracy traffic classification

— Designed programmable architecture to support various C4.5 decision tree
models

— Designed the first 400 Gbps single chip traffic classifier
= Both deep pipelining and multi-threaded parallelism have been explored

* Future Work
— Dynamic updating of the C4.5 model in both our architectures

— Explore the potential of the multi-threaded parallelism in high throughput
network processing applications
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Thank you!

Questions?
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