Polyhedral-Based Data Reuse Optimization

for Configurable Computing

Louis-Noél Pouchet' Peng Zhang' P. Sadayappan? Jason Cong!

! University of California, Los Angeles
2 The Ohio State University

February 12, 2013
ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays
Monterey, CA

< | o
NC s 0o UCLA

Overview: FPGA’13

Overview
The current situation:
Tremendous improvements on FPGA capacity/speed/energy

» But off-chip communications remains very costly, on-chip memory
is scarce

UCLA/OSU 2

Overview: FPGA’13

Overview
The current situation:
Tremendous improvements on FPGA capacity/speed/energy

» But off-chip communications remains very costly, on-chip memory
is scarce

HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)
» But still extensive manual effort needed for best performance

UCLA/OSU 2

Overview: FPGA’13

Overview
The current situation:
Tremendous improvements on FPGA capacity/speed/energy

» But off-chip communications remains very costly, on-chip memory
is scarce

HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)
» But still extensive manual effort needed for best performance

Numerous previous research work on C-to-FPGA (PICO, DEFACTO,
MMAIpha, etc.) and data reuse optimizations

» But (strong) limitations in applicability / transformations supported
/ performance achieved

UCLA/OSU 2

Overview:

FPGA’13

Overview
The current situation:
Tremendous improvements on FPGA capacity/speed/energy

» But off-chip communications remains very costly, on-chip memory is
scarce

Our solution: automatic, resource-aware data reuse optimization
framework (combining loop transformations, on-chip buffers, and
communication generation)

UCLA/OSU

Overview: FPGA’13

Overview

The current situation:

HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)
» But still extensive manual effort needed for best performance
Our solution: complete HLS-focused source-to-source compiler

UCLA/OSU 2

Overview: FPGA’13

Overview

The current situation:

Numerous previous research work on C-to-FPGA (PICO, DEFACTO,
MMAIpha, etc.) and data reuse optimizations

» But (strong) limitations in applicability / transformations supported /
performance achieved
Our solution: unleash the true power of the polyhedral framework
(loop transfo., comm. scheduling, etc.)

UCLA/OSU 2

The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:
» Loops have affine control only (over-approximation otherwise)

> Image processing, including medical imaging pipeline (NSF CDSC project)
> Linear algebra
> Iterative solvers (PDE, etc.)

UCLA/OSU 3

The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:

» Loops have affine control only (over-approximation otherwise)
> [teration domain: represented as integer polyhedra

iy .
> i>=1 i<=n
n+!
for (i=1; i<=n; ++i 1 0o 0 -1 _
(. !). 1 0 1 0 i PR TP S PR N j<=n
. for (3j=1; j<=n; ++3j) j "
; ; . Dsi=| 0 oo 20 ¢ oo
. if (i<=n-3j+2) 1 0 1 0 n
s[i] = 1 11 2 ! 2] ¢ o 0¥
’ e -0 -S>
N i<=n—j+2
12 n n+2

lteration domain of Sy

UCLA/OSU

The Polyhedral Model:

FPGA'13

The Polyhedral Model in a Nutshell

Affine program regions:

» Loops have affine control only (over-approximation otherwise)

> [teration domain: represented as integer polyhedra

» Memory accesses: static references, represented as affine functions of

Xs and p

for (i=0; i<n; ++i) {

. s[i] = 0;

. for (j=0; j<n; ++j)

. s[i] = s[il+ali]l[31*x[3];

UCLA/OSU

L&) =1

N 1
L) =
f@s)=[0

The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:
» Loops have affine control only (over-approximation otherwise)
> [teration domain: represented as integer polyhedra
» Memory accesses: static references, represented as affine functions of

Xs and p
» Data dependence between S1 and S2: a subset of the Cartesian
product of Dg; and Ds, (exact analysis)
Sl iterations
for (i=1; i<=3; ++i) { 11 0
. s[i] = 0; B
- for (j=1; j<=3; ++j) opgsp:| 0 1 0
1 0
0

is] 0
is2 | =))
lisa] =6 S2 iteration

. s[i] = s[i] + 1; N

o
—_—t =

-
|

UCLA/OSU 3

The Polyhedral Model:

FPGA'13

The Polyhedral Model in a Nutshell

Affine program regions:

>

| 2

>

v

Loops have affine control only (over-approximation otherwise)

Iteration domain: represented as integer polyhedra

Memory accesses: static references, represented as affine functions of
Xs and p

Data dependence between S1 and S2: a subset of the Cartesian
product of Dg; and Ds, (exact analysis)

Polyhedral compilation:

UCLA/OSU

Precise dataflow analysis [Feautrier,88]

Optimal algorithms for data locality [Bondhugula,08]
Effective code generation [Bastoul,04]
Computationally expensive algorithms (ILP/PIP)

Data Reuse Optimization: FPGA’13

Step 1: Scheduling for Better Data Reuse

» Main idea: schedule operations accessing the same data as close
as possible from each other

» Tiling is useful, but not all programs are tilable by default!
> Need complex sequence of loop transformations to enable tiling
> The Tiling Hyperplane method automatically finds such sequence
> Uses an ILP for the optimization problem

» In our software, the first stage is to transform the input code so that:

@ The number of tilable "loops" is maximized
© Temporal data locality is maximized
© Alltilable loops can be tiled with an arbitrary tile size

UCLA/OSU

Data Reuse Optimization:

FPGA'13

Step 2: Reuse Data Using On-Chip Buffers

Key ideas:
» Compute the set of data used at a given loop iteration

» Reuse data between consecutive loop iterations

» The process works for any loop in the program

» Natural complement of tiling: the tile size will determine how much data
is read by a non-inner-loop iteration

The polyhedral framework can be used to easily compute all this
information, including what to communicate

UCLA/OSU

Data Reuse Optimization: FPGA’13

Computing the Per-lteration Data Reuse

// Two-dimensional Jacobi-like stencil
for (£t = 0; £t < T; ++t)
for (i = 0; i < N; ++i)
for (j = 0; j < N; ++3)
B[i][j] = 0.2x(A[i][j-1]

+ A[i][3]
+ A[i] [j+1]
+ A[i-1][3]
+ A[i+1]1[31);

UCLA/OSU 6

Data Reuse Optimization:

FPGA’13

Computing the Per-lteration Data Reuse

UCLA/OSU

Compute the data space of A, at it-
eration X = (¢,1,j)

DS(%) = |JFS4(®)
seS

F(X) is the image of ¥ by the function
F.

FPGA'13

Data Reuse Optimization:

Computing the Per-lteration Data Reuse

Compute the data space of A, at it-

j+2

g

2

_J-2

= (t7i7j_ 1)

eration y

JFSy ()
SES

DSA()

UCLA/OSU

FPGA’13

Data Reuse Optimization:

Computing the Per-lteration Data Reuse

—
)
S~—
<<
%)
Q
C
=
Y a3
7] <
S %)
S Q
= I
a ~
V
g 3
o X
° S
7] 54
=]
Q
o
T _ oz

j+2

+1

i

1

1'

S -

_J-2

UCLA/OSU

FPGA'13

Data Reuse Optimization:

Computing the Per-lteration Data Reuse

.,
o
2 3
3 2
. @
g S
2 &
© |
-w —
c ™=
= =
£ 20)
£ Q
8 Il
~
5 O]
2 s
=
© s
S)
2 &)
T S
oD
o n "
o T
+1
=
-
+;
==
Y
-
I
L
:
-
N
L
o
N
b}
muuuu
m
2
(=]
<
2
=]

Data Reuse Optimization:

FPGA’13

Computing the Per-lteration Data Reuse

UCLA/OSU

These sets are parametric polyhedral
sets

» Use CLooG to scan them
» Work for any value of t,i,j

— an initialization copy is executed
before the first iteration of the loop,
and communications are done at
each iteration

FPGA’13

Data Reuse Optimization:

Computing the Per-lteration Data Reuse

Buffer set: full blue set (data space

N
+
sty

i

i

-1

2

UCLA/OSU

Data Reuse Optimization: FPGA’13

Quick Overview of the Full Algorithm

@ For each array and each loop, compute:

> the buffer polyhedron
> the per-iteration communication polyhedron

@ For a given array, find the loop which minimizes communication
volume with a buffer fitting the FPGA resource

© Make the entire program use on-chip arrays (buffers)

> Example: A[1][j] = A[i][]j+1] becomes for a buffer &_1[bsl] [bs2]:
A_1[1i % bsl][]j % bs2] =A_1[1 % bsl][(j+l) % bs2]

© Insert the codes scanning the polyhedral sets in the program
» Example of copy-in statement: A_1[1 % bsl][j % bs2] = A[1][]];

UCLA/OSU 8

High-Level Synthesis: FPGA’13

Step 3: HLS-specific Optimizations
For good performance, numerous complementary optimizations needed

» Reduce the Il of inner loops by forcing inner-most parallel loops
Use polyhedral-based parallelization methods

» Exhibit usable task-level parallelism
Use polyhedral-based analysis, and factor the tasks in functions

» Overlap communication and computation

Use FIFO commmunication modules, and scan polyhedral
commmunication sets also in prefetch functions to issue requests

» Find the best tile size / shape for a program

Create a machine-specific accurate communication latency model
Run AutoESL on a variety of tile sizes, retain the best one

UCLA/OSU 9

Experimental Results: FPGA’13

Performance Results

Denoise: Pareto-optimal Segmentation: Pareto-optimal DGEMM: Pareto-optimal

5 wo- 3 o0r PRTRE
o0 - . g -

2 L 500 - 2

g 700 - a 5

o @ w-

& s00- & 00 - 2

T 500 - - ~ -

£ + £ - s

@ o @ . 2 w0

2 oo- 2 x0- H

T owo- * o - @ - .

& & &

@ . D g - @ .

5 o0- s " 5 ©- .

S g . g .

S o Maee . L T R T ° St e
fewn 200 Gedn dewn sexs bews 7edn Tostn 150109 20109 250000 Ges08 25609 dos09 456408

L ow

Total execution time (in cycles) Total execution time (in cycles) Total execulion‘?r;;.(ix‘:‘:;cles)
Benchmark | Description || basic off-chip | PolyOpt | hand-tuned [17]
denoise 3D Jacobi+Seidel-like 7-point stencils 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 3D Jacobi-like 7-point stencils 0.05 GF/s 24.91 GF/s 23.39 GF/s
DGEMM matrix-multiplication 0.04 GF/s 22.72 GF/s N/A
GEMVER sequence of matrix-vector 0.10 GF/s 1.07 GF/s N/A

» Convey HC-1 (4 Xilinx Virtex-6 FPGAs), total bandwidth up to 80GB/s
> AutoESL version 2011.1, use memory/control interfaces provided by Convey

» Core design frequency: 150MHz, off-chip memory frequency: 300HMz

UCLA/OSU 10

Software Infrastructure: FPGA’13

PolyOpt/HLS

(_PIPLb)

Input full Parser _p.| PolyParser

C program C-to-AST AST-to-polyhedra Candl Pluto vectorizer
dependence Transfo. for Transfo. for
A analysis tilability inner-parallel

CLooG LMmP
Polyhedra-to- buffer and

. i comm.
HLS-friendl Unparser | g res&‘;wgide PolyUnparser PAST generation

C program AST-to-C for HLS PAST-to-AST
| T —
—» Ccode PoCC, the Polyhedral Compiler Collection
> Sage AST (ROSE) PolyOpt, a Polyhedral Optimizer for the ROSE compiler

—» SCoP (polyhedral rep.)

» PAST (Polyhedral AST) ROSE compiler infrastructure (LLNL)

More at http://www.cs.ucla.edu/~pouchet/software/polyopthls

UCLA/OSU 1

http://www.cs.ucla.edu/~pouchet/software/polyopthls

Conclusion:

FPGA’13

Conclusions

Take-home message:

Affine programs are an excellent fit for FPGA/HLS

Recent progresses in HLS tools let compiler researchers target
FPGA optimization

Complete, end-to-end framework implemented and effectiveness
demonstrated

Future work:

UCLA/OSU

>

>
>
>

Use analytical models for tile size selection

Improve further the performance with additional optimizations

Support more machines/FPGAs (currently: developed for Convey HC-1)
Improve polyhedral code generation for HLS/FPGAs

	Overview
	The Polyhedral Model
	Data Reuse Optimization
	High-Level Synthesis
	Experimental Results
	Software Infrastructure
	Conclusion

