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Overview: FPGA’13

Overview
The current situation:

I Tremendous improvements on FPGA capacity/speed/energy

I But off-chip communications remains very costly, on-chip memory
is scarce

⇒ Our solution: automatic, resource-aware data reuse optimization
framework (combining loop transformations, on-chip buffers, and
communication generation)

I HLS/ESL tools have made great progresses (ex: AutoESL/Vivado)

I But still extensive manual effort needed for best performance

⇒ Our solution: complete HLS-focused source-to-source compiler

I Numerous previous research work on C-to-FPGA (PICO, DEFACTO,
MMAlpha, etc.) and data reuse optimizations

I But (strong) limitations in applicability / transformations supported
/ performance achieved

⇒ Our solution: unleash the true power of the polyhedral framework
(loop transfo., comm. scheduling, etc.)
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The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)

. Image processing, including medical imaging pipeline (NSF CDSC project)

. Linear algebra

. Iterative solvers (PDE, etc.)
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The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra

for (i=1; i<=n; ++i)
. for (j=1; j<=n; ++j)
. . if (i<=n-j+2)
. . . s[i] = ...

DS1 =


1 0 0 −1
−1 0 1 0

0 1 0 −1
−1 0 1 0
−1 −1 1 2

 .


i
j
n
1

≥~0
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The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p

for (i=0; i<n; ++i) {
. s[i] = 0;
. for (j=0; j<n; ++j)
. . s[i] = s[i]+a[i][j]*x[j];

}

fs( ~xS2) =
[

1 0 0 0
]
.

 ~xS2
n
1



fa( ~xS2) =

[
1 0 0 0
0 1 0 0

]
.

 ~xS2
n
1



fx( ~xS2) =
[

0 1 0 0
]
.

 ~xS2
n
1


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The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

for (i=1; i<=3; ++i) {
. s[i] = 0;
. for (j=1; j<=3; ++j)
. . s[i] = s[i] + 1;

}

DS1δS2 :



1 −1 0 0
1 0 0 −1
−1 0 0 3

0 1 0 −1
0 −1 0 3
0 0 1 −1
0 0 −1 3


.


iS1
iS2
jS2
1

 = 0

≥~0

i

S1 iterations

S2 iterations
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The Polyhedral Model: FPGA’13

The Polyhedral Model in a Nutshell

Affine program regions:
I Loops have affine control only (over-approximation otherwise)
I Iteration domain: represented as integer polyhedra
I Memory accesses: static references, represented as affine functions of

~xS and~p
I Data dependence between S1 and S2: a subset of the Cartesian

product of DS1 and DS2 (exact analysis)

Polyhedral compilation:

I Precise dataflow analysis [Feautrier,88]

I Optimal algorithms for data locality [Bondhugula,08]

I Effective code generation [Bastoul,04]

I Computationally expensive algorithms (ILP/PIP)
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Data Reuse Optimization: FPGA’13

Step 1: Scheduling for Better Data Reuse

I Main idea: schedule operations accessing the same data as close
as possible from each other

I Tiling is useful, but not all programs are tilable by default!
. Need complex sequence of loop transformations to enable tiling
. The Tiling Hyperplane method automatically finds such sequence
. Uses an ILP for the optimization problem

I In our software, the first stage is to transform the input code so that:
1 The number of tilable "loops" is maximized
2 Temporal data locality is maximized
3 All tilable loops can be tiled with an arbitrary tile size
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Data Reuse Optimization: FPGA’13

Step 2: Reuse Data Using On-Chip Buffers

Key ideas:
I Compute the set of data used at a given loop iteration

I Reuse data between consecutive loop iterations

I The process works for any loop in the program
I Natural complement of tiling: the tile size will determine how much data

is read by a non-inner-loop iteration

I The polyhedral framework can be used to easily compute all this
information, including what to communicate
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Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

// Two-dimensional Jacobi-like stencil
for (t = 0; t < T; ++t)

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

B[i][j] = 0.2*( A[i][j-1]
+ A[i][j]
+ A[i][j+1]
+ A[i-1][j]
+ A[i+1][j]);
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Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Compute the data space of A, at it-
eration~x = (t, i, j)

DSA(~x) =
⋃
s∈S

FSs
A(~x)

F(~x) is the image of~x by the function
F.
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Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Compute the data space of A, at it-
eration~y = (t, i, j−1)

DSA(~y) =
⋃
s∈S

FSs
A(~y)

F(~x) is the image of~x by the function
F.
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Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Reused data: red set

ReuseSet = DSA(~x)∩DSA(~y)

UCLA / OSU 7



Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Per-iteration communication: blue
set

PerCommSet = DSB(~x)−ReuseSet
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Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

These sets are parametric polyhedral
sets

I Use CLooG to scan them
I Work for any value of t,i,j

→ an initialization copy is executed
before the first iteration of the loop,
and communications are done at
each iteration
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Data Reuse Optimization: FPGA’13

Computing the Per-Iteration Data Reuse

j j+1 j+2j-1j-2

i

i+1

i+2

i-1

i-2

Buffer set: full blue set (data space
at (t, i, j))
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Data Reuse Optimization: FPGA’13

Quick Overview of the Full Algorithm

1 For each array and each loop, compute:
. the buffer polyhedron
. the per-iteration communication polyhedron

2 For a given array, find the loop which minimizes communication
volume with a buffer fitting the FPGA resource

3 Make the entire program use on-chip arrays (buffers)
I Example: A[i][j] = A[i][j+1] becomes for a buffer A_l[bs1][bs2]:

A_l[i % bs1][j % bs2] = A_l[i % bs1][(j+1) % bs2]

4 Insert the codes scanning the polyhedral sets in the program
I Example of copy-in statement: A_l[i % bs1][j % bs2] = A[i][j];

UCLA / OSU 8



High-Level Synthesis: FPGA’13

Step 3: HLS-specific Optimizations

For good performance, numerous complementary optimizations needed

I Reduce the II of inner loops by forcing inner-most parallel loops
I Use polyhedral-based parallelization methods

I Exhibit usable task-level parallelism
I Use polyhedral-based analysis, and factor the tasks in functions

I Overlap communication and computation
I Use FIFO commmunication modules, and scan polyhedral

commmunication sets also in prefetch functions to issue requests

I Find the best tile size / shape for a program
I Create a machine-specific accurate communication latency model
I Run AutoESL on a variety of tile sizes, retain the best one

UCLA / OSU 9



Experimental Results: FPGA’13

Performance Results
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Figure 5: Communication time vs. Communication volume
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Figure 6: Total time vs. On-Chip Buffer Size Requirement, Pareto-optimal points

5.2.4 Complete Results
Table 2 summarizes the best version found by our framework,

for each tested benchmark. We report #PEs the number of replica-
tions of the full computation we have been able to place on a single
Virtex-6 FPGA as in the Convey HC-1, showing the level of coarse-
grain parallelization we have achieved. BRAM and LUT are totals
for the set of PEs placed on the chip.

Table 2: Characteristics of Best Found Versions
Benchmark tile size #PEs #BRAM #LUT
denoise 4×8×128 2 132 178544

segmentation 4×8×256 8 584 177288
DGEMM 8×256×32 16 320 112672
GEMVER 128×128 10 500 140710

Table 3 reports the performance, in GigaFlop per second, of nu-
merous different implementations of the same benchmark. out-of-
the-box reports the performance of a basic manual off-chip-only im-
plementation of the benchmark, without our framework. PolyOpt/HLS-
E reports the performance achieved with our automated framework.
Those are AutoESL results obtained with our fast DSE framework.
Hand-tuned reports the performance of a manually hand-tuned ver-
sion serving as our performance reference, from Cong et al. [17]. It
has been designed through time-consuming source code level man-
ual refinements, specifically for the HC-1ex machine. It demon-
strated that a 4-FPGA manual design for denoise and segmentation
systematically outperforms a CPU-based implementation, both in
terms of performance improvement (from 2× to 20×) and energy-
delay product (up to 2000×), therefore showing the great poten-
tial of implementing such 3D image processing algorithms on FP-
GAs [17].
We observe that for denoise (only 2 PEs were generated by Poly-

Opt/HLS) the final performance, despite being significantly better
than an off-chip-based solution, remains far from the manual design
(which uses 4 PEs). On one hand, the code we generate, and espe-
cially the loop structures, are more complex for denoise than, e.g.,
segmentation. This leads to under-performing execution for our au-

tomatically generated code. On the other hand, the reference man-
ual implementation uses numerous techniques not implemented in
our automatic framework, such as in-register data reuse, fine-grain
communication pipelining, and algorithmic modifications leading to
near-optimal performance for this version.
For segmentation, we outperform the manual design, despite the

clear remaining room for improvement our framework still has, as
shown by the denoise number. We mention that semi-automated
manual design can be performed on top of our framework, to address
optimizations we do not support, such as array partitioning.

Table 3: Side-by-side comparison
Benchmark out-of-the-box PolyOpt/HLS-E hand-tuned [17]
denoise 0.02 GF/s 4.58 GF/s 52.0 GF/s

segmentation 0.05 GF/s 24.91 GF/s 23.39 GF/s
dgemm 0.04 GF/s 22.72 GF/s N/A
gemver 0.10 GF/s 1.07 GF/s N/A

Finally Table 4 compares the latency as reported by AutoESL us-
ing our memory latency framework for fast DSE, against the wall-
clock time observed on the machine after full synthesis of the gen-
erated RTL. We report the performance of a single PE call executing
a subset (slice) of the full computation.

Table 4: AutoESL vs. full synthesis comparison (in cycles)
Benchmark AutoESL only full synthesis

denoise-1PE (1/32 slice) 23732704 25254164 (+6%)
segmentation-1PE (1/32 slice) 131984559 148878928 (+12%)
dgemm-1PE (1/64 slice) 5022287 5055335 (+1%)

6. CONCLUSION
High Level Synthesis (HLS) tools for synthesizing designs spec-

ified in a behavioral programming language like C/C++ can dra-
matically reduce the design time especially for embedded systems.
HLS systems have now reached a level of advancement to be able
to generate RTL that comes quite close to hand generated designs.

Benchmark Description basic off-chip PolyOpt hand-tuned [17]

denoise 3D Jacobi+Seidel-like 7-point stencils 0.02 GF/s 4.58 GF/s 52.0 GF/s
segmentation 3D Jacobi-like 7-point stencils 0.05 GF/s 24.91 GF/s 23.39 GF/s

DGEMM matrix-multiplication 0.04 GF/s 22.72 GF/s N/A
GEMVER sequence of matrix-vector 0.10 GF/s 1.07 GF/s N/A

I Convey HC-1 (4 Xilinx Virtex-6 FPGAs), total bandwidth up to 80GB/s

I AutoESL version 2011.1, use memory/control interfaces provided by Convey

I Core design frequency: 150MHz, off-chip memory frequency: 300HMz
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Software Infrastructure: FPGA’13

PolyOpt/HLS

Parser
C-to-AST

Unparser
AST-to-C

PolyParser
AST-to-polyhedra

PolyUnparser
PAST-to-AST

Outliner
restructure code 

for HLS

Candl
dependence 

analysis

Pluto
Transfo. for 

tilability

vectorizer
Transfo. for 

inner-parallel

LMP
buffer and 

comm. 
generation

CLooG
Polyhedra-to-

PAST

PIPLib

ISL

C code

Sage AST (ROSE)

SCoP (polyhedral rep.)

PAST (Polyhedral AST)

Input full 

C program

HLS-friendly

C program

PoCC, the Polyhedral Compiler Collection

PolyOpt, a Polyhedral Optimizer for the ROSE compiler

ROSE compiler infrastructure (LLNL)

More at http://www.cs.ucla.edu/~pouchet/software/polyopthls
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Conclusion: FPGA’13

Conclusions

Take-home message:

I Affine programs are an excellent fit for FPGA/HLS

I Recent progresses in HLS tools let compiler researchers target
FPGA optimization

I Complete, end-to-end framework implemented and effectiveness
demonstrated

Future work:
I Use analytical models for tile size selection
I Improve further the performance with additional optimizations
I Support more machines/FPGAs (currently: developed for Convey HC-1)
I Improve polyhedral code generation for HLS/FPGAs
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