Faithful Single-Precision Floating-Point Tangent for FPGAs

Martin Langhammer and Bogdan Pasca

ALTERA

Feb 12, 2013

What?

Tangent function:

- periodic, input range restricted to ($-\pi / 2,+\pi / 2$)
- symmetrical to the origin: $\tan (-x)=-\tan (x)$
- Taylor series:

$$
\tan (x)=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\ldots x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)
$$

What?

- Compute in floating-point (IEEE-754)
- Triplet (sign, exponent, fraction) defines x :

$$
x=(-1)^{s} 2^{e} 1 . f
$$

- Focus on single-precision $\mathrm{w}_{\mathrm{E}}=8$ (exp. width), $\mathrm{w}_{\mathrm{F}}=32$ (frac. width)
- Perform faithful rounding:

- Restrict input to fixed-point
- $\tan (x) \approx x$ for $x<2^{-W_{F} / 2}$
- dynamic input range: $\left[2^{-\mathrm{w}_{\mathrm{F}} / 2},+\pi / 2\right]$
- input in error-free fixed-point on $1+w_{F}+\left\lceil w_{F} / 2\right\rceil$ bits (24+12=36 bits for single precision).
- Use mathematical identities:

$$
\begin{gathered}
\tan (a+b)=\frac{\tan (a)+\tan (b)}{1-\tan (a) \tan (b)} \\
\tan (a+b+c)=\frac{\frac{\tan (a)+\tan (b)}{1-\tan (a) \tan (b)}+\tan (c)}{1-\frac{\tan (a)+\tan (b)}{1-\tan (a) \tan (b)} \tan (c)}
\end{gathered}
$$

How? - Single-precision specific simplifications

- use the fixed-point decomposition of the input argument

- simplify:
- $\tan (a)$ and $\tan (b)$ small $\rightarrow \tan (a) \tan (b)$ very small
- $b<2^{-17}$ safe to use $\tan (b) \approx b$
\rightarrow tangent computed using:

$$
\tan (x)=\frac{\tan (c)+\tan (a)+b}{1-(\tan (a)+b) \tan (c)}
$$

How? - Faithful precision requirement

$$
E_{\text {total }}=E_{\text {approx }}+E_{\text {round }}
$$

- $E_{\text {round }}$ pack result to floating-point (nearest, $1 / 2 u / p$)
- Eapprox method errors + datapath trimmings
- tangent implemnted as FP multiplication

$$
p=n \times i d
$$

- target: keep $E_{\text {approx }}<1 / 2 u l p$
... some steps later:
\rightarrow for single-precision $p=24$ (error bound slightly better than $1 / 4$ ulp for numerator and inverse denominator)
- certify approximations for the numerator:

1. $\tan (c)=0$ and $\tan (a) \tan (b)$ maximal:
```
a = . }11111111
b = . 111111111111111000
```

\rangle relative error is slightly less than 2^{-25}, and should be 2^{-26}.
$>$ but denominator is 1 and carries no error \rightarrow accuracy reached
2. $\tan (c)$ minimal but >0 and $\tan (a) \tan (b)$ maximal
$>\tan (a)<\tan (c)$ relative error is 2^{-26} (tabulated precision for $\tan (c)$)
$>$ compute both $\tan (a)$ and $\tan (b)$ with $1+w_{F}+2$ bits of accuracy.

- certify approximations for denominator:
- possible cancellation amplifies existing errors
- avoid large cancellation using additional table
- tabulate results for 256 ulp before $\pi / 2$
- largest cancellation can now be produced by:
c = 1.10010010;
a = . 000111001;
b = . 010000;
- cancellation size is 3 bits $\rightarrow 3$ additional bits for right term
- compute $\tan (a)$ and $\tan (c)$ on $1+\mathrm{w}_{\mathrm{F}}+2+3$ bits with 0.5 ulp of accuracy.

Results

Architecture	Lat @ Freq.	Resources
ours	30 @ 314MHz	18MUL, 8M9K, 1172LUT, 1078Reg
$\tan (\pi x)[1]$	48 @ 360MHz	28MUL, 7M9K, 2633LUT, 4099Reg
$\sin \cos (\pi x)[2]$	85 ns	$10 \mathrm{MUL}, 2^{* 1365 ~ L U T s ~}$
$\operatorname{div}[3]$	16 @ 233MHz	1210LUT, 1308REG
$\operatorname{div}[4]$	$11 @ 400 \mathrm{MHz}$	8MUL, 4M9K, 274LUT, 291Reg

- shorter latency
- fewer resources
[1] Altera DSP Builder Advanced Blockset.
http://www.altera.com/technology/dsp/advanced-blockset/dsp-advanced-blockset.html
[2] Jérémie Detrey and Florent de Dinechin. Floating-point trigonometric functions for FPGAs. FPL’07
[3] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic data paths with FloPoCo.. IEEE DT 2011
[4] Bogdan Pasca. Correctly rounded floating-point division for DSP-enabled FPGAs. FPL'12

Conclusion

- we implement the tangent function as a fused operator
- exploit FPGA flexibility: exotic formats, fixed-point and floating-point
- careful error analysis \rightarrow compute just right
- make efficient use of existing FPGA resources
(memories and multipliers)

Thank you and see you at the poster!

