Faithful Single-Precision Floating-Point Tangent for FPGAs

Martin Langhammer and Bogdan Pasca

ALTERA

Feb 12, 2013

- **symmetrical** to the origin: tan(-x) = -tan(x)
- Taylor series:

$$\tan(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \dots x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

- Compute in **floating-point** (IEEE-754)
- Triplet (sign, exponent, fraction) defines x:

$$x = (-1)^s 2^e 1.f$$

Focus on single-precision $w_E = 8$ (exp. width), $w_F = 32$ (frac. width)

> Perform faithful rounding:

Restrict input to fixed-point

- $tan(x) \approx x$ for $x < 2^{-w_F/2}$
- dynamic input range: $[2^{-w_F/2}, +\pi/2]$
- input in error-free fixed-point on $1 + w_F + \lceil w_F/2 \rceil$ bits (24+12=36 bits for single precision).

Use mathematical identities:

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)},$$
$$\tan(a+b+c) = \frac{\frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} + \tan(c)}{1 - \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}\tan(c)}$$

How? - Single-precision specific simplifications

use the fixed-point decomposition of the input argument

simplify:

- tan(a) and tan(b) small $\rightarrow tan(a)tan(b)$ very small
- $b < 2^{-17}$ safe to use $tan(b) \approx b$

 \rightarrow tangent computed using:

$$\tan(x) = \frac{\tan(c) + \tan(a) + b}{1 - (\tan(a) + b)\tan(c)}$$

How? - Faithful precision requirement

$$E_{\text{total}} = E_{\text{approx}} + E_{\text{round}}$$

- Eround pack result to floating-point (nearest, 1/2ulp)
- E_{approx} method errors + datapath trimmings
- tangent implemnted as FP multiplication

$$p = n \times id$$

▶ target: keep *E*_{approx} < 1/2*ulp*

... some steps later:

 \rightarrow for single-precision p = 24 (error bound slightly better than 1/4ulp for numerator and inverse denominator)

How? - Datapath width

• certify approximations for the numerator:

- 1. tan(c) = 0 and tan(a)tan(b) maximal:
 - a = . 111111111
 - b = . 111111111111111000
 - relative error is slightly less than 2⁻²⁵, and should be 2⁻²⁶.
 - \blacktriangleright but denominator is 1 and carries no error \rightarrow accuracy reached
- 2. tan(c) minimal but > 0 and tan(a)tan(b) maximal
 - ▶ tan(a) < tan(c) relative error is 2^{-26} (tabulated precision for tan(c))
 - compute both tan(a) and tan(b) with $1 + w_F + 2$ bits of accuracy.
- certify approximations for denominator:
 - possible cancellation amplifies existing errors
 - avoid large cancellation using additional table
 - tabulate results for 256*ulp* before $\pi/2$
 - largest cancellation can now be produced by:

```
c = 1.10010010;
```

```
a = . 000111001;
```

- b = . 010000;
- $\blacktriangleright\,$ cancellation size is 3 bits \rightarrow 3 additional bits for right term
- compute tan(a) and tan(c) on $1 + w_F + 2 + 3$ bits with 0.5*ulp* of accuracy.

Architecture	Lat @ Freq.	Resources
ours	30 @ 314MHz	18MUL, 8M9K, 1172LUT, 1078Reg
$tan(\pi x)$ [1]	48 @ 360MHz	28MUL, 7M9K, 2633LUT, 4099Reg
$sincos(\pi x)$ [2]	85ns	10 MUL, 2*1365 LUTs
div [3]	16 @ 233MHz	1210LUT, 1308REG
div [4]	11 @ 400MHz	8MUL, 4M9K, 274LUT, 291Reg

shorter latency

fewer resources

[1] Altera DSP Builder Advanced Blockset.

http://www.altera.com/technology/dsp/advanced-blockset/dsp-advanced-blockset.html [2] Jérémie Detrey and Florent de Dinechin. *Floating-point trigonometric functions for FPGAs.* FPL'07 [3] Florent de Dinechin and Bogdan Pasca. *Designing custom arithmetic data paths with FloPoCo.*. IEEE DT 2011

[4] Bogdan Pasca. Correctly rounded floating-point division for DSP-enabled FPGAs. FPL'12

- > we implement the tangent function as a fused operator
- > exploit FPGA flexibility: exotic formats, fixed-point and floating-point
- careful error analysis \rightarrow compute just right
- make efficient use of existing FPGA resources

(memories and multipliers)

Thank you and see you at the poster!