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Similarity search, or subsequence retrieval, is one of the most important sub-routines in time series data mining.
there are many applications that need to find some patterns in the time series.

Background: Time Series Data Mining

Similarity Search Segmentation

Correlation Discovery Visualization

Classification

Novelty/Anomaly
detection

] No history data involved [_| May have real time req Bl History data analyses
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?o(r:?;;ample, we need to find a special heartbeat, which indicates a heart disease, from the electrocardiogram
E :
Firstly, we need to pick out sub-sequences with a sliding window

Background : Subsequence Similarity Search

®Time series (Electrocardiogram) & pattern (heartbeat)
0.2} ' ' ' ' n

ol _ a

-0.2 1 -
1 1 1 1
\/ 500 1000 1500 2000 2500 0 100 200 300 400

®Pick/out sub-sequences with sliding window

|
\"J‘l.‘.»,‘h"

L N AN o o N




Background : Subsequence Similarity Search
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Background : Subsequence Similarity Search

® Time series (Electrocardiogram) & pattern (heartbeat)
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Background : Subsequence Similarity Search
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Background : Subsequence Similarity Search

® Time series (Electrocardiogram) & pattern (heartbeat)
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®Pick out sub-sequences with sliding window
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® Compare these sub-sequences with the pattern

®A proper distance metric is needed to define the similarity
® c.g. Euclid distance




But there is increasing evidence that Dynamic Time Warping is the best distance metric in most domains.

DTW distance is defined as D (M, M) ,as the following formula:

The time complexity of DTW is up to O(M square), so it is the bottleneck of many applications.

Background: DTW

®Dynamic Time Warping (DTW)
IS the best distance measure
In most domains|[4]

P=p; Dy Ps5. P S=15;8,8; Sy
DTW distance = D(M, M),

(D(i-1, j)
D(i, j) = dist(s, p) + mi D(i, j-1)
\D(i-1, j-1)

where D(0,0) = 0, D(i, 0) =D(0,j) =~ ,1<i<M,1<j<M;

M i1s the pattern length.
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Either absolute distance or square distance can be used as dist()




A classic way to speed up subsequence similarity search based on an expensive distance is to use a cheap-to-
compute distance to estimate the lower bound.

Background: Lower Bound

®L B technique tries to estimate the lower bound of DTW
distance in a cheap way. (larger value=> less similarity)

® |[f lower bound exceeds the threshold, the real DTW distance
will also exceed the threshold, so unpromising subsequences can
be pruned off without the DTW calculation.

OLB_Kim: the first point, the last point, the max point and the min point.

OLB_Keogh: Construct an upper envelope and a lower envelope of the pattern, and
the accumulated parts falling out of the envelopes is defined as the LB_Keogh
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Most of the existing software implementations share the similar algorithm framework:
The existing software-based parallel implementations, such as multi-core, GPU, try to dispatch sub-sequences
starting from different positions to different processing elements. This coarse-grained parallelism may lead to a
heavy global data-transfer burden, as one sub-sequence may consist of many points.

Related Work
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It can not support on-line updating. The parameter modification, project re-compilation and FPGA re-configuration
may take several hours in total.

Related Work

® The first and only work[2] using FPGA to accelerate DTW is generated
by a C-to-RTL tool

] ) Intemal Buffer
m Datapoints | Datapoint .
> Normalizer ————————1J

—_
L m Datapoints
Input Buffer
Input =
P = - | Datapoint]

PIN: =

Removing Buffer

Warper

« “The Warper module (DTW module) is implemented as a systolic array. A systolic array
consists of data processing units connected in a matrix fashion”

® The lack of insight into FPGA limits the scalability and flexibility:
® it can not support patterns of length larger than 1024.

® |t can not support on-line patterns updating, if the length of the new pattern is
changed.
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In the first phase, we use a incremental formula to do normalization, as the right figure.
The sub-sequence is subtracted by the mean, and divided by the standard deviation.
In the second phase, we use a hybrid lower bound consisting of LB_partial DTW, LB_Keogh and reversed

LB_Keogh

Algorithm

Normalization

Lower
Bounds

DTW

AL

~
Sliding
window
G )
v

Normalization

Hybrid
Lower
Bounds
A
~
Multiple DTW
\. J
\ 4
match

®B_partial DTW
®| B_Keogh/ reversed LB_Keogh
U;= max {Pig, Pir.s- Pi+R 1 Prl;

L;=min { P g, Piges---Pig1 Pur k
S,--U,- if S,->U,-

D, = L-S; if L>S;
0 else

LB Keogh(P, S) =sum{D,, D,..., D}
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Suppose we have finished lower bound calculation of all the sub-sequences,

The red line is the real DTW distance of all the sub-sequences, the blue line is the hybrid lower bound, and the

threshold is 40.

We can find, the sub-sequences that have not been pruned off are usually located in a continue interval.

Algorithm: lower bound

Distance of subsequences in a random walk dataset

2 m [ ! T T T

CTW distance

180 | partial DTV
LB Keogh
reversed LB Keogh
160 |- Hybrid LB
140 | -
120 Subseq e .
Lk}
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% 100 | g
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E,D. = —
BT st :
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subseqguence starting position
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If two paths grow to the same cell, the longer path is replaced by the shorter path,.

Note the final goal is to find the most similar sub-sequence, instead of the DTW distance of every sub-sequence.

Algorithm: SPRING

Y. Sakurai et al. propose a computation-reuse algorithm called SPRING [3]

® Only one point is different between two neighboring subsequences

” Il | | f

I
|r"J | A
whk, ik, )

® Merge N M-by-M matrixes into single N-by-M matrix. N paths grow at the same time

26 19 23 16
18 19 1
15 2
14

26(1)
18(1)
15(1)
14(1)
12 7 42)  4(2)
® It reduces the time complexity from O(N*M*M) to O(N*M)

23(2) 16(2) 1262) 14(2) 12(2)

® N~

—
N
w
w
A~ OO0 o0 O

® The sequences can’t be normalized in stream

14(2)

17(8)
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In our opinion, the false result is caused by the time-varying offset, instead of the time-invariant offset. With this
motivation, we make a assumption that if the offset or the amplitude can be approximately seen as time-invariant
among C continue sub-sequences, these C sub-sequences can be normalized as a group.

The third figure prove this assumption works well, both normalization lead to accurate recognition.

Algorithm: normalization

® Assumption: If the offset or the amplitude can be approximately
seen as time-invariant among C continue sub-sequences, these C
sub-sequences can be normalized at the same time.
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Then we use a bit vector to indicate which sub-sequence have not been pruned off by the Lower bound.
The second sliding window only need to pick out few continue sub-sequences that still need DTW calculation.
These sub-sequences will be normalized as a group, before the multiple DTW calculation.

Algorithm

A\
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Time series
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Sliding Bit vector
window
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Normalization
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Lower
Bounds
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Final results
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Then we come to the hardware framework.
Compared to the algorithm framework, We place duplicate modules for both lower bound and DTW to improve the
throughput of the whole system.

Implementation

Hardware Framework

v
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Lower
Bound

PCIE
value(32 bit)
: value(32 bit) value(32 bit) tim.e(32 t_’it)
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—> FIFO 3> Join — FIFO = Join | FIFO >/ Join B> Buffer
\ \ A ¢ \ \ A * \ A
ffffffffffff “Norm——{+Norm+-————————--————-Norm-
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Implementation

®Normalization

Normalization

Updating mean& std

Pipeline latency: K cycle

' } Mean

Std

+ Tuple
Tuple Tuple _»(:_» Tuple Tuple Tuple = out
in hift i
r 1 shifter 2+ P shifter [ 2*M+K+1 [ | (Tuple-mean)/std | "
®|_ower Bound
Hybrid Lower Bound
envelope ‘ Reversed distance [LOWEZI
Tuple |___LB_Keogh disi:nce
in T >
— LB_pDTW | LB_Keogh Mo *
tuple istance
L » shifter
distance
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output of the last PE when all the PEs are busy.

Implementation

init MUX

Init RAM

pattern RAM

For DTW calculation, we propose a simple but effective structure: PE-ring.
A single PE is only used to calculate one column of the warping matrix, and all the PEs are connected one by one.

A multiplexer is used to send the pattern and the boundary condition into the ring. The FIFO is used to buffer the

result

-| Single PE
— Min R
n |.> = + /—* Min
* Curr
single D/SP >
distance
—P0 4 Prev |
; * c SPime

INF /I i\

L
»

lid

out

out

>

pattern
valid 4‘-»

Plvalid

valid

enable |tuple

19




Suppose we have 5 PEs in the ring, and we want to find the pattern “0, 5, 9, 10

PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

distance

DTW distance
partial DTW

LB Keogh
reversed LB Keogh
Hybrid LB

r
3917

I
3918

I I
3922 3923 3.924

INF, INF, ...,

Init RAM

pattern RAM

9, 5, 0” from the

MUX

:

ime series.

Time ‘
Series
Router

B 0,5,9,10,9,5
P7=0 |INF
P6=5 |INF
P5=9 |INF
P4=10|INF
P3=9 |INF
P2=5 |INF
P1=0 |INF [8(1)
valuel  [8 |1 9 |6 9 6 |1 |7 P
time 1|2 6 |7 10 |11 1z 13 |14 20
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PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

DTW distance
partial DTW

LB Keogh
reversed LB Keogh
Hybrid LB

distance
8

0 r I I 1 1 I I
3916 3917 3918 3919 392 3.921 3.922 3923 3924
subsequence starting position X 10°

INF, INF, ...,
Init RAM

pattern RAM
0,5,9,10,9

P7=0 [INF

P6=5 |INF

P5=9 [INF

P4=10[INF

P3=9 |INF

P2=5 [INF |11(1)

P1=0 |INF [8(1)

—
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PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

DTW distance
180 partial DTW
LB Keogh
reversed LB Keogh
180 - Hybrid LB
140 -
120
o
8
é 100
S

INF, INF, ...,

Init RAM

pattern RAM

e e 0,5,9,10
P7=0 |INF
P6=5 |INF
P5=9 |INF
P4=10[INF
P3=9 |INF [12(1)
P2=5 |INF |11(1)]5(2)
P1=0 [INF [8(1) |1(2) [4(3)
value 8 |1 |4 9 |7 |9 6 fo 18 |9 6 {7 |7 |3
time 1 |2 (3 |4 |5 6 (T [8 |9 |10 |11 |12 |13 |14
= S

MUX
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All the PE transfer the pattern and the updated boundary conditions to the ne

PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

DTW distance
partial DTW

LB Keogh
reversed LB Keogh
Hybrid LB

distance
8

INF, INF, IN

40 Init RAM g MUX
23; U W R pattern RAM >
subsequence starting position x 10° 0’ 5, 9

P7=0 |INF

P6=5 |INF

P5=9 |INF

P4=10|INF |14(1)

P3=9 [INF [12(1)|13(2)

P2=5 |INF [11(1)[5(2) |2(2)

P1=0 [INF [8(1) |1(2) [4(3) |9(4)

value 8 1 419 |17 19 |6 o 8 |9 6 |1 |7 3

time 1 2 3 |4 |5 6 |7 [8 |9 10 (11 (12 |13 |14 23
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PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

200
DTW distance
180 partial DTW
LB Keogh
reversed LB Keogh
180 - Hybrid LB
140 -
120
o
8
é 100
S

INF, INF

Init RAM

pattern RAM

Siosequence St poston o o5
P7=0 |INF
P6=5 |INF
P5=9 |INF [15(1)
P4=10{INF [14(1)|21(1)
P3=9 [INF [12(1)]13(2)[7(2)
P2=5 |INF |11(1)]5(2) |2(2) |6(2)
P1=0 [INF [8(1) [1(2) [4(3) [9(4) [7(5)
value 8 |1 |4 9 |7 |9 6 fo 18 |9 6 {7 |7 |3
time 1 |2 (3 |4 |5 6 (T [8 |9 |10 |11 |12 |13 |14
= e o hr o T g

MUX
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At the 6 cycle, as all the PEs are busy, the output of the last PE will be stored into the F|§OS

PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

DTW distance
partial DTW

LB Keogh
reversed LB Keogh
Hybrid LB

distance
8

INF

40 Init RAM 'MUX
23; U W R pattern RAM >
nceenoe siatiog ostion ik ;

P7=0 |INF

P6=5 |INF |18(1)

P5=9 |INF [15(1)]|22(1)

P4=10|INF |14 (1)|21(1)|13(2)

P3=9 [INF {12(1)|13(2)|7(2) [2(2)

P2=5 |INF |11(1)]5(2) |2(2) |6(2) |8(2)

P1=0 [INF |8(1) |1(2) [4(3) [9(4) |7(5)

value 8 1 419 |17 19 |6 o 8 |9 6 |1 |7 3

time 1 2 3 |4 |5 6 |7 [8 |9 10 (11 (12 |13 |14 25
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PE-ring for DTW

distance

Distance of subsequences in a random walk dataset
T T T T

DTW distance
partial DTW

LB Keogh
reversed LB Keogh
Hybrid LB

r
3917

I I 1 1 I
3918 3919 392 3.921 3.922
subsequence starting position

.
3923 3924
x 10°

Init RAM

pattern RAM

MUX

None
P7=0 [INF [26(1)
P6=5 |INF [18(1)[19(1)
P5=9 |INF |15(1)]|22(1)[18(2)
P4=10[INF {14(1)|21(1)|13(2)|3(2)
P3=9 [INF [12(1)|13(2)|7(2) [2(2) |4(2)
P2=5 |INF |11(1)]5(2) |2(2) |6(2) |8(2)
P1=0 [INF |8(1) |1(2) [4(3) [9(4) |7(5)
value 8 1 4 |9 7|9 6 9 6 7 7 3
time 1 2 3 4 |5 6 7 10 (11 (12 |13 |14 26
- e bre. e, mmr. e




At the 8 cycle, the PE 1 is idle again because it finishes the calculation of the fi
boundary in the FIFO is sent to PE 1, and PE 1 works as a virtual PE 6.

1€ pattern and

PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

Time
Series

DTW distance
partial DTW

LB Keogh
reversed LB Keogh
Hybrid LB

None
Init RAM >

MUX

pattern RAM >

0 r I I 1 1 I I
3916 3917 3918 3919 392 3.921 3.922 3923 3924
subsequence starting position X 10°

None
P7=0 [INF |26(1)|19(1)
P6=5 |INF |18(1)|19(1)]|19(2)
P5=9 [INF [15(1)|22(1)[18(2){3(2)
P4=10{INF [14(1)|21(1){13(2)[3(2) [5(2)
P3=9 [INF [12(1)|13(2)|7(2) [2(2) |4(2)
P2=5 [INF |11(1)|5(2) |2(2) [6(2) |8(2)
P1=0 [INF [8(1) |1(2) [4(3) [9(4) |7(5) |9(6)
value 8 1 419 |17 19 |6 o 8 |9 6 |1 |7 3
time 1 2 3 |4 |5 6 |7 [8 |9 10 (11 (12 |13 |14 27
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PE-ring for DTW

Distance of subsequences in a random walk dataset
T T T T

DTW distance
partial DTW

LB Keogh
reversed LB Keogh
Hybrid LB

distance
8

None

Init RAM

Time

Series

MUX

pattern RAM

subsequence statting position X 10° None
P7=0 [INF [26(1)]19(1)[23(2)
P6=5 |INF |18(1)|19(1){19(2)|7(2)
P5=9 [INF [15(1)]22(1)[18(2)|3(2) [5(2)
P4=10[INF |14 (1)|21(1)[13(2)[3(2) |5(2)
P3=9 [INF [12(1){13(2)[7(2) [2(2) [4(2)
P2=5 [INF [11(1)|5(2) [2(2) |6(2) |8(2) [11(5)
P1=0 [INF [8(1) [1(2) |4(3) (9(4) [7(5) |9(6) |6(T)
value 8 |1 |4 9 |7 |9 6 fo 18 |9 6 {7 |7 |3
time 1 |2 (3 |4 |5 6 (T [8 |9 |10 |11 |12 |13 |14
= e o e b b s s
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Finally, we find the most similar sub-sequence, starting from time 2 and endi [ :
When a new pattern of different is wanted, we only need to refresh the pat A
There is no random memory access in the whole system, so all the FIFOs & wp;ﬁe@ ted on the

off-chip memory, so this PE-ring can support nearly infinitely long pattern.
PE-ring for DTW

Series
Router

®Fully exploit the fine-grained parallelism
®Flexible parallelism degree.

® -
Support on-line updating pattern NF.INF. . INF /
of various lengths it RAM MUX
pattern RAM >

0,5910,9,50

P7=0 |INF |26 (1)]19(1)[23(2){16(2)[12(2)[14(2)[12(2)[6(2) [14(2)[17(8)|11(8)[12(8)|14(8)|12(8) ﬁ\ny PE in tjhe'rti;g ?an
e removedad withou

P6=5 |INF |18(1)]19(1){19(2)]7(2) [5(2) [9(2) [6(2) [11(2)[10(8)(8(8) [5(8) [7(8) [9(8) |11(8) causing functional errors
P5=9 [INF [15(1)|22(1)|18(2)(3(2) [5(2) |5(2) |8(2) [17(2)|7(8) |4(8) |7(8) |9(8) [11(8)[17(8)] and the saved resource
P4=10{INF |14 (1)|21(1)[13(2)[3(2) |5(2) [5(2) [8(2) |17(2)[6(8) [4(8) |7(8) [9(8) [11(8)|17(11 can be allocated to other
p3=9 vk (2D |s @@ L@ 1@ 1@ 1@ lue)lie) [36) l66) [se) [oaifiigs modules. If there is

; abundant resource, a
P2=5 |INF [11(1)[5(2) |2(2) [6(2) [8(2) |11(5)|7(7) [5(8) |3(8) |7(8) [7(8) |8(11){9(13)[5(14) new PE can be directly
P1=0 |INF [8(1) [1(2) [4(3) |9(4) |7(5) [9(6) [6(7) |0(8) [8(9) [9(10)|6(11)|7(12)|7(13)|3(14)| inserted into the ring to
value 8 [t |4 9 [z 9 6 o [8 |9 |6 [t |7 3 improve the

time 12 3 & 5 6 |7 I8 |9 |10 |11 |12 |13 |4 performance. 29




This PE-ring can also be applied to lower bound. The pattern is replaced by theenvelopes, the path only grow
along the anti-diagonal.
As lower bound has different performance in different dataset, we can inse
to improve the throughput of the whole system.

ck module

PE-ring for LB_Keogh

Ui=max {P.g, Piges.- -Pur1 Pirks

Li=min { P g, Pigis..-Pirs Pur ks >
Di - Si-Ui If Si>Ui
INF, INF, ..., INF /‘

L-S; if L>S; Init RAM § MUX

0 el Se pattern RAM >
LB(P;y, S;y) =sum{D,, D,..., Dy} 5210, 00 10,
U7=5 |L7=0 |INF [ —— -
U6=9 [L6=0 |INF Algorithm Framework
U5=10|L5=bH [INF [INF
U4=10[{L4=9 |INF |INF |INF —)-l Mormalization P~ Lower Bound H DTW =
U3=10[L3=5 [INF |INF [INF [4(1) |
U2=9 |L2=0 [INF |INF |[3(1) [0(2) [0(3)
U1=5 [L1=0 |INF [3(1) [0(2) [0(3) |4(4) (2(5)
value 8 1 4 9 7 9 6 0 8 9 6 7 7
time 1 2 3 4 5 6 7 8 9 10 11 12 13 30
DE DE 1 DE9 DPE Q2 DEA DER




Experiment

O®FPGA board: Altera/Terasic DE4

« Combinational ALUTs
 Dedicated logic registers
« Memory bits

» frequency:

®CPU: intel i7-930 2.8GHz,

362,568/424,960 (85%)
230,160/424,960 (54%)
1,902,512/21,233,664 (9%)
150MHz

16 GB DDR3 1333MHz,

windows 7
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Experiment

®Software: T. Rakthanmanon [10] (the best paper of the sigkdd 2012)

®Dataset 1: medical data

® This dataset has about 8G points, and we need to find a pattern of length 421 with R
= 5%

LiRRRRRNNiIS)

Table 1: Time taken to search one vear of ECG data
UCRK DTWT10] Our work Speedup
ECG | 18.0 minutes 56 seconds 1928

L Query

I P
h b = = W

0 100
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They claim that the constraint should be as small as about 5% to prevent pathological warping, while some other
researchers insist that there should be no (or larger) constrain to improve the fault tolerance. In our opinion, the
constraint R is an application-dependent parameter. Though we test their program in cases that R is set to be a
large one in some dataset, we only show the result as a comparison of computation power in extreme cases, not
standing for that the larger constraint can improve the high level accuracy in these applications.

Experiment

®Dataset 2: speech recognition

® \We download the CMU_ARCTIC speech synthesis databases, and construct a

speech of 1 minute(1 million points) by splicing together the first 21 utterances of all
the 1132 utterances
Time taken to search a speech dataset

® Two orders of magnitude
(0.827s/0.008s =103) speedup
In the case that pattern length
is 128, R=5%

®Four orders of magnitude
(31716s/0.5s=63432) speedup
In the case that pattern length is
16384, R=20%

Time/second

10

i —%— R=0.05

—S— our work: R =0.05
[ —*  our work: R=0.5

i £l

n—*—R=01 —

4 =
E—F—R=0.2

R=0.3
R=04
R=0.5

3 3
1024 2048

pattern length

] 3 £ £ 3 £
128 256 512 4096 8192 16384
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Experiment

®FPGA and GPU: D.Sart [2]

®Dataset : Electrical Penetration Graph (EPG) signal.
® This data set has 1,499,000 points, and the pattern length is 360, no constraint

(R=100%).

EPG data set~ D. Sart[2]¢ | Ourworke speedup~
GPU « 80.39s~ - 7398+
FPGA » 2 24s8e 0.011s~ 203+#

®More datasets can be seen in the paper

34




® Thank you!
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Profiling

®Random walk: 1M tuple, pattern length = 128, R=5%

Function / Call Stack Rardware Event ... Hardware Eve. Pl Retire Stalls  LLC Miss SEETL
CPU_CLK U... v ¥ INST RETIRED.. Rate Stalls
& main 2,402,201,204 3918415127 06132 | |
# |b_keogh_cumulative 1,158,922,723 1,065721,254 1.087 '
# dtw 138,496,969 115,395,583 1.200
# lb_keogh_data_cumulative 131,618,505 107,358,820 1226
H lower_upper_lemire 123,818,682 124,413,794 0.995 .
# |b_lkim_hierarchy 107,450,509 79,992 155 1.343 .
# allrem 65,206,999 31,874699 1.257
# LdrGetDllHandleEx 2,204,827 1]

®Random walk: 1M tuple, pattern length = 128, R=20%

Function / Call Stack S:Ldgféeivﬁ lHl:;iw;;:lli E::E Retire Stalls  LLC Miss Ex:i:ﬁ:n Ml_ilsjscetﬂsa;...
& main 3,550,613,111  4,774769,541 0.744 |
& diw 3,360,470,893 | 3,470,674,105 0.968 [}
# |b_keogh_cumulative 787,781,793 800,736,978 0.934 [JJ |
# |b_keogh_data_cumulative 714,456,962 748348230 0.955 | |
# lower_upper_lemire 154,867,233 155,769,308 0.994
 Ib_kim_hierarchy 125,824,356 142,588,112 0.882 [ B
@ allrem 26,120,521 28,350,488 0.921
& [Import thunk Clsqri] 4,803,942 4777379 1.006
NtConnectPort 2,025,026 0

LLC Load Branch Instruction
Misses Ser.. Mispredict  Starvation
Branch Contested  Instruction
Mispredict  Accesses Starvation




