
1

Accelerating Subsequence Similarity Search
Based on Dynamic Time Warping Distance

with FPGA

Zilong Wang, Sitao Huang, Lanjun Wang, Hao Li, Yu Wang, Huazhong Yang

2

Background: Time Series Data Mining

Similarity Search

Correlation Discovery

Classification Clustering

Motif Discovery

Novelty/Anomaly

detection

Rule

Discovery

Segmentation

Visualization

No history data involved May have real time req History data analyses

Similarity search, or subsequence retrieval, is one of the most important sub-routines in time series data mining.

there are many applications that need to find some patterns in the time series.

3

Time series (Electrocardiogram) & pattern (heartbeat)

Pick out sub-sequences with sliding window

Background： Subsequence Similarity Search

0 100 200 300 400
-3

-2

-1

0

1

2

d

For example, we need to find a special heartbeat, which indicates a heart disease, from the electrocardiogram
(ECG).
Firstly, we need to pick out sub-sequences with a sliding window

4

Time series (Electrocardiogram) & pattern (heartbeat)

Pick out sub-sequences with sliding window

Background： Subsequence Similarity Search

0 100 200 300 400
-3

-2

-1

0

1

2

d

5

Time series (Electrocardiogram) & pattern (heartbeat)

Pick out sub-sequences with sliding window

Background： Subsequence Similarity Search

0 100 200 300 400
-3

-2

-1

0

1

2

d

6

Time series (Electrocardiogram) & pattern (heartbeat)

Pick out sub-sequences with sliding window

Background： Subsequence Similarity Search

0 100 200 300 400
-3

-2

-1

0

1

2

d

7

Time series (Electrocardiogram) & pattern (heartbeat)

Pick out sub-sequences with sliding window

Compare these sub-sequences with the pattern

A proper distance metric is needed to define the similarity
 e.g. Euclid distance

Background： Subsequence Similarity Search

0 100 200 300 400
-3

-2

-1

0

1

2

d

0 100 200 300 400
-3

-2

-1

0

1

2

d

8

Dynamic Time Warping (DTW)

is the best distance measure

in most domains[4]

P= p1, p2, p3…pM; S= s1, s2, s3…sM

DTW distance = D(M, M);

D(i-1, j)

D(i, j) = dist(si, pj) + min D(i, j-1)

D(i-1, j-1)

where D(0,0) = 0; D(i, 0) = D(0, j) = ∞ , 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑀;

M is the pattern length.

Either absolute distance or square distance can be used as dist()

Background: DTW

But there is increasing evidence that Dynamic Time Warping is the best distance metric in most domains.

DTW distance is defined as D（M，M）,as the following formula:

The time complexity of DTW is up to O(M square), so it is the bottleneck of many applications.

9

LB technique tries to estimate the lower bound of DTW
distance in a cheap way. (larger value=> less similarity)

 If lower bound exceeds the threshold, the real DTW distance
will also exceed the threshold, so unpromising subsequences can
be pruned off without the DTW calculation.

LB_Kim: the first point, the last point, the max point and the min point.

LB_Keogh: Construct an upper envelope and a lower envelope of the pattern, and

the accumulated parts falling out of the envelopes is defined as the LB_Keogh

Background: Lower Bound

A classic way to speed up subsequence similarity search based on an expensive distance is to use a cheap-to-
compute distance to estimate the lower bound.

10

Related Work

Sliding

window

Normalization

Cascading

Lower

Bounds

DTW

match

new

subsequence

DTW DTW

Normalization

Lower

Bounds

DTW

Cascading

Lower

Bounds

Cascading

Lower

Bounds

Most of the existing software implementations share the similar algorithm framework:
The existing software-based parallel implementations, such as multi-core, GPU, try to dispatch sub-sequences
starting from different positions to different processing elements. This coarse-grained parallelism may lead to a
heavy global data-transfer burden, as one sub-sequence may consist of many points.

11

The first and only work[2] using FPGA to accelerate DTW is generated
by a C-to-RTL tool

• “The Warper module (DTW module) is implemented as a systolic array. A systolic array
consists of data processing units connected in a matrix fashion”

The lack of insight into FPGA limits the scalability and flexibility:

 it can not support patterns of length larger than 1024.

 It can not support on-line patterns updating, if the length of the new pattern is
changed.

Related Work

It can not support on-line updating. The parameter modification, project re-compilation and FPGA re-configuration
may take several hours in total.

12

Algorithm

Sliding

window

Normalization

Hybrid

Lower

Bounds

Multiple DTW

match

Normalization

Lower

Bounds

DTW

LB_partial DTW

LB_Keogh/ reversed LB_Keogh
Ui = max {Pi-R, Pi-R+1…Pi+R-1, Pi+R};

Li = min { Pi-R, Pi-R+1…Pi+R-1, Pi+R };

Si-Ui if Si>Ui

Di = Li-Si if Li>Si

0 else

LB_Keogh(P, S) = sum{D1, D2…, DY}

In the first phase, we use a incremental formula to do normalization, as the right figure.
The sub-sequence is subtracted by the mean, and divided by the standard deviation.
In the second phase, we use a hybrid lower bound consisting of LB_partial DTW, LB_Keogh and reversed
LB_Keogh

13

Algorithm: lower bound

Suppose we have finished lower bound calculation of all the sub-sequences,
The red line is the real DTW distance of all the sub-sequences, the blue line is the hybrid lower bound, and the
threshold is 40.
We can find, the sub-sequences that have not been pruned off are usually located in a continue interval.

14

Y. Sakurai et al. propose a computation-reuse algorithm called SPRING [3]

Only one point is different between two neighboring subsequences

Merge N M-by-M matrixes into single N-by-M matrix. N paths grow at the same time

 N * =>

 It reduces the time complexity from O(N*M*M) to O(N*M)

The sequences can’t be normalized in stream

Algorithm: SPRING

26 19 23 16 12

18 19 19 7 5

15 22 18 3 5

14 21 13 3 5

12 13 7 2 4

26(1) 19(1) 23(2) 16(2) 12(2) 14(2) 12(2) 6(2) 14(2) 17(8)

18(1) 19(1) 19(2) 7(2) 5(2) 9(2) 6(2) 11(2) 10(8) 8(8)

15(1) 22(1) 18(2) 3(2) 5(2) 5(2) 8(2) 17(2) 7(8) 4(8)

14(1) 21(1) 13(2) 3(2) 5(2) 5(2) 8(2) 17(2) 6(8) 4(8)

12(1) 13(2) 7(2) 2(2) 4(2) 4(2) 7(2) 14(8) 4(8) 3(8)

If two paths grow to the same cell, the longer path is replaced by the shorter path,.
Note the final goal is to find the most similar sub-sequence, instead of the DTW distance of every sub-sequence.

15

Assumption: If the offset or the amplitude can be approximately
seen as time-invariant among C continue sub-sequences, these C
sub-sequences can be normalized at the same time.

Algorithm: normalization

500 1000 1500 2000 2500

-0.2

0

0.2

a

500 1000 1500 2000 2500
90

100

110

120

130

b

500 1000 1500 2000 2500

200

400

600

800

c

0 100 200 300 400
-3

-2

-1

0

1

2

d

In our opinion, the false result is caused by the time-varying offset, instead of the time-invariant offset. With this
motivation, we make a assumption that if the offset or the amplitude can be approximately seen as time-invariant
among C continue sub-sequences, these C sub-sequences can be normalized as a group.
The third figure prove this assumption works well, both normalization lead to accurate recognition.

16

Algorithm

Sliding

window

Normalization

Hybrid

Lower

Bounds

Multiple DTW:

SRPING

Final results

Sliding

window

Multiple

Normalization

Bit vector

Time series

Then we use a bit vector to indicate which sub-sequence have not been pruned off by the Lower bound.
The second sliding window only need to pick out few continue sub-sequences that still need DTW calculation.
These sub-sequences will be normalized as a group, before the multiple DTW calculation.

17

Implementation

Hardware Framework

NormNorm

FIFO

PCIE

Norm

Lower
Bound

Join

 value(32 bit)
 time(32 bit)

 value(16 bit)
 time(16 bit)

 LB(16 bit)
 time(16 bit)

High
Precision
domain

Low
Precision
domain

 value(32 bit)
 time(32 bit)
valid(1 bit)

FIFO

Norm

Lower
Bound

Join

 value(32 bit)
 time(32 bit)
valid(1 bit)

FIFO

DTW

Join

DTW

Join

 value(16 bit)
 time(16 bit)

 DTW distance
(16 bit)

 time(16 bit)

valid(1 bit)

 value(32 bit)
 time(32 bit)
valid(1 bit)
flag(1 bit)

 value(32 bit)
 time(32 bit)

flag(1 bit)

Buffer FIFO

Then we come to the hardware framework.
Compared to the algorithm framework, We place duplicate modules for both lower bound and DTW to improve the
throughput of the whole system.

18

Normalization

Lower Bound

Implementation

Normalization

shifter

Updating mean& std
Pipeline latency: K cycle

Tuple
2*M+1

Tuple
1

Tuple =
(Tuple-mean)/std

Tuple
2*M+K+1

shifter

Mean
Std

Tuple
in

Tuple
out

Hybrid Lower Bound

LB_pDTW

Tuple
in

LB_Keogh

Reversed
LB_Keogh

Max

envelope

tuple

distance

distance

+

lower
bound

distance

shifter
distance

19

DTW

Implementation

Single PE

Init RAM

PE 2

PE 1

PE ...PE W-1

PE W
Time
Series
Router

P

D (:, 1)

PP

D (:, W)
s[1]

D
 FIFO

pattern

FIFO

MUX

P

init

D (:, 2)D (:, R-1)

P

s[2]

s[W-1]

s[W]

D (:, W)

pattern RAM

P

Min

single
distance

Curr
D/SP

Prev
c SPime

Min+

|-|

D out

D in

pattern

valid

P outP in

tuple

tupleenable

result

busy

P valid

P valid

INF

valid

1

1 0

0

For DTW calculation, we propose a simple but effective structure: PE-ring.
A single PE is only used to calculate one column of the warping matrix, and all the PEs are connected one by one.
A multiplexer is used to send the pattern and the boundary condition into the ring. The FIFO is used to buffer the
output of the last PE when all the PEs are busy.

20

PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF

P3=9 INF

P2=5 INF

P1=0 INF 8(1)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10, 9, 5

0

INF

8

Suppose we have 5 PEs in the ring, and we want to find the pattern “0, 5, 9, 10, 9, 5, 0” from the time series.

21

PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF

P3=9 INF

P2=5 INF 11(1)

P1=0 INF 8(1) 1(2)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10, 9

5

INF

1

D=8(1)

0

At the second cycle, the router sends the second point of the sub-sequence to PE 2, the output of PE 1 will be
treated as the new boundary condition for PE 2.

PE 1 also send the first point of the pattern to PE2, so PE2 can start its calculation at the second cycle.

22

PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF

P3=9 INF 12(1)

P2=5 INF 11(1) 5(2)

P1=0 INF 8(1) 1(2) 4(3)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10

9

INF

4

D=11(1)

5

0

D=1(2)

23

PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF 14(1)

P3=9 INF 12(1) 13(2)

P2=5 INF 11(1) 5(2) 2(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF, INF, INF

0, 5, 9

10

INF

9

D=12(1)

9

5

D=5(2)

0

D=4(3)

All the PE transfer the pattern and the updated boundary conditions to the next PE

24

PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF 15(1)

P4=10 INF 14(1) 21(1)

P3=9 INF 12(1) 13(2) 7(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF, INF

0, 5

9

INF

7

D=14(1)

10

9

D=13(2)

5

D=2(2)0

D=9(4)

25

PE-ring for DTW

P7=0 INF

P6=5 INF 18(1)

P5=9 INF 15(1) 22(1)

P4=10 INF 14(1) 21(1) 13(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF

0

5

INF

D=15(1)

9

10

D=21(1)

9

D=7(2)5

D=6(2)

0

D=7(5)

At the 6 cycle, as all the PEs are busy, the output of the last PE will be stored into the FIFOs

26

PE-ring for DTW

P7=0 INF 26(1)

P6=5 INF 18(1) 19(1)

P5=9 INF 15(1) 22(1) 18(2)

P4=10 INF 14(1) 21(1) 13(2) 3(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

None

None

0

INF

D=18(1)

5

9

D=22(1)

10

D=13(2)9

D=2(2)

5

D=8(2)

D=7(5)

0

At the 7th cycle, the pattern RAM and init RAM are empty, and the multiplexer is switched to the FIFO

27

PE-ring for DTW

P7=0 INF 26(1) 19(1)

P6=5 INF 18(1) 19(1) 19(2)

P5=9 INF 15(1) 22(1) 18(2) 3(2)

P4=10 INF 14(1) 21(1) 13(2) 3(2) 5(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5) 9(6)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5 PE1

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

None

None

0

D=7(5)

D=26(1)

0

5

D=19(1)

9

D=18(2)10

D=3(2)

9

D=4(2)

D=8(2)

5

9

At the 8 cycle, the PE 1 is idle again because it finishes the calculation of the first column. Then the pattern and
boundary in the FIFO is sent to PE 1, and PE 1 works as a virtual PE 6.

28

PE-ring for DTW

P7=0 INF 26(1) 19(1) 23(2)

P6=5 INF 18(1) 19(1) 19(2) 7(2)

P5=9 INF 15(1) 22(1) 18(2) 3(2) 5(2)

P4=10 INF 14(1) 21(1) 13(2) 3(2) 5(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2) 11(5)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5) 9(6) 6(7)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5 PE1 PE2

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

None

None

5

D=8(2)

D=9(6)

0

0

D=19(1)

5

D=19(2)9

D=3(2)

10

D=5(2)

D=4(2)

9

6

29

Fully exploit the fine-grained parallelism

Flexible parallelism degree.

Support on-line updating pattern

of various lengths

PE-ring for DTW

P7=0 INF 26(1) 19(1) 23(2) 16(2) 12(2) 14(2) 12(2) 6(2) 14(2) 17(8) 11(8) 12(8) 14(8) 12(8)

P6=5 INF 18(1) 19(1) 19(2) 7(2) 5(2) 9(2) 6(2) 11(2) 10(8) 8(8) 5(8) 7(8) 9(8) 11(8)

P5=9 INF 15(1) 22(1) 18(2) 3(2) 5(2) 5(2) 8(2) 17(2) 7(8) 4(8) 7(8) 9(8) 11(8) 17(8)

P4=10 INF 14(1) 21(1) 13(2) 3(2) 5(2) 5(2) 8(2) 17(2) 6(8) 4(8) 7(8) 9(8) 11(8) 17(11)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2) 4(2) 7(2) 14(8) 4(8) 3(8) 6(8) 8(8) 10(11)11(14)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2) 11(5) 7(7) 5(8) 3(8) 7(8) 7(8) 8(11) 9(13) 5(14)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5) 9(6) 6(7) 0(8) 8(9) 9(10) 6(11) 7(12) 7(13) 3(14)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5 PE1 PE2 PE3 PE4 PE5 PE1 PE2 PE3 PE4

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10, 9, 5, 0

Finally, we find the most similar sub-sequence, starting from time 2 and ending to time 8.

When a new pattern of different is wanted, we only need to refresh the pattern RAM

There is no random memory access in the whole system, so all the FIFOs and RAMs can be implemented on the

off-chip memory, so this PE-ring can support nearly infinitely long pattern.

Any PE in the ring can

be removed without

causing functional errors

and the saved resource

can be allocated to other

modules. If there is

abundant resource, a

new PE can be directly

inserted into the ring to

improve the

performance.

30

Ui = max {Pi-R, Pi-R+1…Pi+R-1, Pi+R};

Li = min { Pi-R, Pi-R+1…Pi+R-1, Pi+R };

Di = Si-Ui if Si>Ui

Li-Si if Li>Si

0 else

LB(P1,Y, S1,Y) = sum{D1, D2…, DY}

PE-ring for LB_Keogh

U7=5 L7=0 INF

U6=9 L6=0 INF

U5=10 L5=5 INF INF

U4=10 L4=9 INF INF INF

U3=10 L3=5 INF INF INF 4(1)

U2=9 L2=0 INF INF 3(1) 0(2) 0(3)

U1=5 L1=0 INF 3(1) 0(2) 0(3) 4(4) 2(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7

time 1 2 3 4 5 6 7 8 9 10 11 12 13

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time
Series
Router

D
 FIFO

pattern

FIFO
MUX

pattern RAM

INF, INF, …, INF

5, 9, 10, 10, 10, 9, 5

0, 0, 5, 9, 5, 0, 0

This PE-ring can also be applied to lower bound. The pattern is replaced by the envelopes, the path only grow
along the anti-diagonal.
As lower bound has different performance in different dataset, we can insert more Pes into the bottleneck module
to improve the throughput of the whole system.

31

FPGA board: Altera/Terasic DE4

• Combinational ALUTs 362,568/424,960 (85%)

• Dedicated logic registers 230,160/424,960 (54%)

• Memory bits 1,902,512/21,233,664 (9%)

• frequency: 150MHz

CPU: intel i7-930 2.8GHz,

16 GB DDR3 1333MHz ,

windows 7

Experiment

32

Software: T. Rakthanmanon [10] (the best paper of the sigkdd 2012)

Dataset 1: medical data
This dataset has about 8G points, and we need to find a pattern of length 421 with R

= 5%

Experiment

33

Dataset 2: speech recognition
We download the CMU_ARCTIC speech synthesis databases, and construct a

speech of 1 minute(1 million points) by splicing together the first 21 utterances of all
the 1132 utterances

Two orders of magnitude

(0.827s/0.008s =103) speedup

In the case that pattern length

is 128, R=5%

Four orders of magnitude

(31716s/0.5s=63432) speedup

in the case that pattern length is

16384, R=20%

Experiment

128 256 512 1024 2048 4096 8192 16384
10

-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

pattern length

T
im

e
/s

e
co

n
d

Time taken to search a speech dataset

R = 0.05

R = 0.1

R = 0.2

R = 0.3

R = 0.4

R = 0.5

our work: R =0.05

our work: R =0.5

They claim that the constraint should be as small as about 5% to prevent pathological warping, while some other
researchers insist that there should be no (or larger) constrain to improve the fault tolerance. In our opinion, the
constraint R is an application-dependent parameter. Though we test their program in cases that R is set to be a
large one in some dataset, we only show the result as a comparison of computation power in extreme cases, not
standing for that the larger constraint can improve the high level accuracy in these applications.

34

FPGA and GPU: D.Sart [2]

Dataset : Electrical Penetration Graph (EPG) signal.
This data set has 1,499,000 points, and the pattern length is 360, no constraint

(R=100%).

More datasets can be seen in the paper

Experiment

35

Thank you!

36

Random walk： 1M tuple， pattern length = 128， R=5%

Random walk： 1M tuple， pattern length = 128， R=20%

Profiling

