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Background: Time Series Data Mining

Similarity Search

Correlation Discovery

Classification Clustering

Motif Discovery

Novelty/Anomaly 

detection 

Rule 

Discovery

Segmentation

Visualization

No history data involved May have real time req History data analyses

Similarity search, or subsequence retrieval, is one of the most important sub-routines in time series data mining.

there are many applications that need to find some patterns in the time series. 
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Time series (Electrocardiogram) & pattern (heartbeat) 

Pick out sub-sequences with sliding window

Background： Subsequence Similarity Search 
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For example, we need to find a special heartbeat, which indicates a heart disease, from the electrocardiogram 
(ECG).
Firstly, we need to pick out sub-sequences with a sliding window
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Time series (Electrocardiogram) & pattern (heartbeat) 

Pick out sub-sequences with sliding window

Compare these sub-sequences with the pattern

A proper distance metric is needed to define the similarity
 e.g. Euclid distance

Background： Subsequence Similarity Search 
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Dynamic Time Warping (DTW)

is the best distance measure

in most domains[4]

P= p1, p2, p3…pM; S= s1, s2, s3…sM

DTW distance = D(M, M);

D(i-1, j)

D(i, j) = dist(si, pj) + min D(i, j-1)

D(i-1, j-1)

where D(0,0) = 0; D(i, 0) = D(0, j) = ∞ , 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑀;

M is the pattern length.

Either absolute distance or square distance can be used as dist()

Background: DTW

But there is increasing evidence that Dynamic Time Warping is the best distance metric in most domains.

DTW distance is defined as D（M，M）,as the following formula:

The time complexity of DTW is up to O(M square), so it is the bottleneck of many applications.
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LB technique tries to estimate the lower bound of DTW 
distance in a cheap way. (larger value=> less similarity)

 If lower bound exceeds the threshold, the real DTW distance 
will also exceed the threshold, so unpromising subsequences can 
be pruned off without the DTW calculation.

LB_Kim: the first point, the last point, the max point and the min point.

LB_Keogh: Construct an upper envelope and a lower envelope of the pattern, and 

the accumulated parts falling out of the envelopes is defined as the LB_Keogh

Background: Lower Bound

A classic way to speed up subsequence similarity search based on an expensive distance is to use a cheap-to-
compute distance to estimate the lower bound.
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Related Work
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Most of the existing software implementations share the similar algorithm framework:
The existing software-based parallel implementations, such as multi-core, GPU, try to dispatch sub-sequences 
starting from different positions to different processing elements. This coarse-grained parallelism may lead to a 
heavy global data-transfer burden, as one sub-sequence may consist of many points.
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The first and only work[2] using FPGA to accelerate DTW is generated 
by a C-to-RTL tool

• “The Warper module (DTW module) is implemented as a systolic array. A systolic array 
consists of data processing units connected in a matrix fashion”

The lack of insight into FPGA limits the scalability and flexibility:

 it can not support patterns of length larger than 1024.

 It can not support on-line patterns updating, if the length of the new pattern is 
changed. 

Related Work

It can not support on-line updating. The parameter modification, project re-compilation and FPGA re-configuration 
may take several hours in total.
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Algorithm

Sliding 

window

Normalization

Hybrid

Lower 

Bounds

Multiple DTW

match

Normalization

Lower 

Bounds

DTW

LB_partial DTW

LB_Keogh/ reversed LB_Keogh
Ui = max {Pi-R, Pi-R+1…Pi+R-1, Pi+R};

Li = min { Pi-R, Pi-R+1…Pi+R-1, Pi+R };

Si-Ui if Si>Ui

Di = Li-Si if Li>Si

0 else

LB_Keogh(P, S) = sum{D1, D2…, DY}

In the first phase, we use a incremental formula to do normalization, as the right figure.
The sub-sequence is subtracted by the mean, and divided by the standard deviation.
In the second phase, we use a hybrid lower bound consisting of LB_partial DTW, LB_Keogh and reversed 
LB_Keogh
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Algorithm: lower bound

Suppose we have finished lower bound calculation of all the sub-sequences,
The red line is the real DTW distance of all the sub-sequences, the blue line is the hybrid lower bound, and the 
threshold is 40.
We can find, the sub-sequences that have not been pruned off are usually located in a continue interval.
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Y. Sakurai et al. propose a computation-reuse algorithm called SPRING [3]

Only one point is different between two neighboring subsequences

Merge N M-by-M matrixes into single N-by-M matrix. N paths grow at the same time 

 N *                                 =>

 It reduces the time complexity from O(N*M*M) to O(N*M)

The sequences can’t be normalized in stream

Algorithm: SPRING

26 19 23 16 12

18 19 19 7 5

15 22 18 3 5

14 21 13 3 5

12 13 7 2 4

26(1) 19(1) 23(2) 16(2) 12(2) 14(2) 12(2) 6(2) 14(2) 17(8)

18(1) 19(1) 19(2) 7(2) 5(2) 9(2) 6(2) 11(2) 10(8) 8(8)

15(1) 22(1) 18(2) 3(2) 5(2) 5(2) 8(2) 17(2) 7(8) 4(8)

14(1) 21(1) 13(2) 3(2) 5(2) 5(2) 8(2) 17(2) 6(8) 4(8)

12(1) 13(2) 7(2) 2(2) 4(2) 4(2) 7(2) 14(8) 4(8) 3(8)

If two paths grow to the same cell, the longer path is replaced by the shorter path,.
Note the final goal is to find the most similar sub-sequence, instead of the DTW distance of every sub-sequence.
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Assumption: If the offset or the amplitude can be approximately 
seen as time-invariant among C continue sub-sequences, these C 
sub-sequences can be normalized at the same time.

Algorithm: normalization
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In our opinion, the false result is caused by the time-varying offset, instead of the time-invariant offset. With this 
motivation, we make a assumption that if the offset or the amplitude can be approximately seen as time-invariant 
among C continue sub-sequences, these C sub-sequences can be normalized as a group.
The third figure prove this assumption works well, both normalization lead to accurate recognition.
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Algorithm
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Then we use a bit vector to indicate which sub-sequence have not been pruned off by the Lower bound. 
The second sliding window only need to pick out few continue sub-sequences that still need DTW calculation. 
These sub-sequences will be normalized as a group, before the multiple DTW calculation. 
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Implementation

Hardware Framework
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DTW

Join
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Join
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 time(16 bit)
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 time(32 bit)
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 value(32 bit)
 time(32 bit)
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Buffer FIFO

Then we come to the hardware framework.
Compared to the algorithm framework, We place duplicate modules for both lower bound and DTW to improve the 
throughput of the whole system.
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Normalization

Lower Bound

Implementation

Normalization

shifter

Updating mean& std 
Pipeline latency: K cycle
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DTW

Implementation
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For DTW calculation, we propose a simple but effective structure: PE-ring. 
A single PE is only used to calculate one column of the warping matrix, and all the PEs are connected one by one. 
A multiplexer is used to send the pattern and the boundary condition into the ring. The FIFO is used to buffer the 
output of the last PE when all the PEs are busy.
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PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF

P3=9 INF

P2=5 INF

P1=0 INF 8(1)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10, 9, 5

0

INF

8

Suppose we have 5 PEs in the ring, and we want to find the pattern “0, 5, 9, 10, 9, 5, 0” from the time series.
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PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF

P3=9 INF

P2=5 INF 11(1)

P1=0 INF 8(1) 1(2)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10, 9

5

INF

1

D=8(1)

0

At the second cycle, the router sends the second point of the sub-sequence to PE 2, the output of PE 1 will be 
treated as the new boundary condition for PE 2.

PE 1 also send the first point of the pattern to PE2, so PE2 can start its calculation at the second cycle. 
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PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF

P3=9 INF 12(1)

P2=5 INF 11(1) 5(2)

P1=0 INF 8(1) 1(2) 4(3)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10

9

INF

4

D=11(1)

5

0

D=1(2)
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PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF

P4=10 INF 14(1)

P3=9 INF 12(1) 13(2)

P2=5 INF 11(1) 5(2) 2(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF, INF, INF

0, 5, 9

10
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9

D=12(1)

9

5

D=5(2)

0

D=4(3)

All the PE transfer the pattern and the updated boundary conditions to the next PE
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PE-ring for DTW

P7=0 INF

P6=5 INF

P5=9 INF 15(1)

P4=10 INF 14(1) 21(1)

P3=9 INF 12(1) 13(2) 7(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF, INF

0, 5

9

INF

7

D=14(1)

10

9

D=13(2)

5

D=2(2)0

D=9(4)
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PE-ring for DTW

P7=0 INF

P6=5 INF 18(1)

P5=9 INF 15(1) 22(1)

P4=10 INF 14(1) 21(1) 13(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF

0

5

INF

D=15(1)

9

10

D=21(1)

9

D=7(2)5

D=6(2)

0

D=7(5)

At the 6 cycle, as all the PEs are busy, the output of the last PE will be stored into the FIFOs
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PE-ring for DTW

P7=0 INF 26(1)

P6=5 INF 18(1) 19(1)

P5=9 INF 15(1) 22(1) 18(2)

P4=10 INF 14(1) 21(1) 13(2) 3(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

None

None

0

INF

D=18(1)

5

9

D=22(1)

10

D=13(2)9

D=2(2)

5

D=8(2)

D=7(5)

0

At the 7th cycle, the pattern RAM and init RAM are empty, and the multiplexer is switched to the FIFO
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PE-ring for DTW

P7=0 INF 26(1) 19(1)

P6=5 INF 18(1) 19(1) 19(2)

P5=9 INF 15(1) 22(1) 18(2) 3(2)

P4=10 INF 14(1) 21(1) 13(2) 3(2) 5(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5) 9(6)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5 PE1

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

None

None

0

D=7(5)

D=26(1)

0

5

D=19(1)

9

D=18(2)10

D=3(2)

9

D=4(2)

D=8(2)

5

9

At the 8 cycle, the PE 1 is idle again because it finishes the calculation of the first column. Then the pattern and 
boundary in the FIFO is sent to PE 1, and PE 1 works as a virtual PE 6.
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PE-ring for DTW

P7=0 INF 26(1) 19(1) 23(2)

P6=5 INF 18(1) 19(1) 19(2) 7(2)

P5=9 INF 15(1) 22(1) 18(2) 3(2) 5(2)

P4=10 INF 14(1) 21(1) 13(2) 3(2) 5(2)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2) 11(5)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5) 9(6) 6(7)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5 PE1 PE2

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

None

None

5

D=8(2)

D=9(6)

0

0

D=19(1)

5

D=19(2)9

D=3(2)

10

D=5(2)

D=4(2)

9

6
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Fully exploit the fine-grained parallelism

Flexible parallelism degree.

Support on-line updating pattern 

of various lengths

PE-ring for DTW

P7=0 INF 26(1) 19(1) 23(2) 16(2) 12(2) 14(2) 12(2) 6(2) 14(2) 17(8) 11(8) 12(8) 14(8) 12(8)

P6=5 INF 18(1) 19(1) 19(2) 7(2) 5(2) 9(2) 6(2) 11(2) 10(8) 8(8) 5(8) 7(8) 9(8) 11(8)

P5=9 INF 15(1) 22(1) 18(2) 3(2) 5(2) 5(2) 8(2) 17(2) 7(8) 4(8) 7(8) 9(8) 11(8) 17(8)

P4=10 INF 14(1) 21(1) 13(2) 3(2) 5(2) 5(2) 8(2) 17(2) 6(8) 4(8) 7(8) 9(8) 11(8) 17(11)

P3=9 INF 12(1) 13(2) 7(2) 2(2) 4(2) 4(2) 7(2) 14(8) 4(8) 3(8) 6(8) 8(8) 10(11)11(14)

P2=5 INF 11(1) 5(2) 2(2) 6(2) 8(2) 11(5) 7(7) 5(8) 3(8) 7(8) 7(8) 8(11) 9(13) 5(14)

P1=0 INF 8(1) 1(2) 4(3) 9(4) 7(5) 9(6) 6(7) 0(8) 8(9) 9(10) 6(11) 7(12) 7(13) 3(14)

value 8 1 4 9 7 9 6 0 8 9 6 7 7 3

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14

PE PE1 PE2 PE3 PE4 PE5 PE1 PE2 PE3 PE4 PE5 PE1 PE2 PE3 PE4

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF, INF, …, INF

0, 5, 9, 10, 9, 5, 0

Finally, we find the most similar sub-sequence, starting from time 2 and ending to time 8.

When a new pattern of different is wanted, we only need to refresh the pattern RAM

There is no random memory access in the whole system, so all the FIFOs and RAMs can be implemented on the 

off-chip memory, so this PE-ring can support nearly infinitely long pattern. 

Any PE in the ring can 

be removed without 

causing functional errors  

and the saved resource 

can be allocated to other 

modules. If there is 

abundant resource, a 

new PE can be directly 

inserted into the ring to 

improve the 

performance. 
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Ui = max {Pi-R, Pi-R+1…Pi+R-1, Pi+R};

Li = min { Pi-R, Pi-R+1…Pi+R-1, Pi+R };

Di = Si-Ui if Si>Ui

Li-Si if Li>Si

0 else

LB(P1,Y, S1,Y) = sum{D1, D2…, DY}

PE-ring for LB_Keogh

U7=5 L7=0 INF

U6=9 L6=0 INF

U5=10 L5=5 INF INF

U4=10 L4=9 INF INF INF

U3=10 L3=5 INF INF INF 4(1)

U2=9 L2=0 INF INF 3(1) 0(2) 0(3)

U1=5 L1=0 INF 3(1) 0(2) 0(3) 4(4) 2(5)

value 8 1 4 9 7 9 6 0 8 9 6 7 7

time 1 2 3 4 5 6 7 8 9 10 11 12 13

PE PE1 PE2 PE3 PE4 PE5

Init RAM

PE 2

PE 1

PE 3PE 4

PE 5
Time 
Series
Router

D
 FIFO

pattern 

FIFO
MUX

pattern RAM

INF, INF, …, INF

5, 9, 10, 10, 10, 9, 5

0, 0, 5, 9, 5, 0, 0

This PE-ring can also be applied to lower bound. The pattern is replaced by the envelopes, the path only grow 
along the anti-diagonal.
As lower bound has different performance in different dataset, we can insert more Pes into the bottleneck module 
to improve the throughput of the whole system.
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FPGA board: Altera/Terasic DE4

• Combinational ALUTs 362,568/424,960 (85%) 

• Dedicated logic registers 230,160/424,960 (54%) 

• Memory bits 1,902,512/21,233,664 (9%)

• frequency: 150MHz

CPU: intel i7-930 2.8GHz, 

16 GB DDR3 1333MHz ,

windows 7

Experiment
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Software: T. Rakthanmanon [10] (the best paper of the sigkdd 2012)

Dataset 1: medical data
This dataset has about 8G points, and we need to find a pattern of length 421 with R 

= 5%

Experiment



33

Dataset 2: speech recognition
We download the CMU_ARCTIC speech synthesis databases, and construct a 

speech of 1 minute(1 million points) by splicing together the first 21 utterances of all 
the 1132 utterances

Two orders of magnitude 

(0.827s/0.008s =103) speedup 

In the case that pattern length

is 128, R=5%

Four orders of magnitude

(31716s/0.5s=63432) speedup

in the case that pattern length is

16384, R=20%

Experiment
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R = 0.05

R = 0.1

R = 0.2

R = 0.3

R = 0.4

R = 0.5

our work: R =0.05

our work: R =0.5

They claim that the constraint should be as small as about 5% to prevent pathological warping, while some other 
researchers insist that there should be no (or larger) constrain to improve the fault tolerance. In our opinion, the 
constraint R is an application-dependent parameter. Though we test their program in cases that R is set to be a 
large one in some dataset, we only show the result as a comparison of computation power in extreme cases, not 
standing for that the larger constraint can improve the high level accuracy in these applications. 
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FPGA and GPU: D.Sart [2]

Dataset : Electrical Penetration Graph (EPG) signal. 
This data set has 1,499,000 points, and the pattern length is 360, no constraint 

(R=100%). 

More datasets can be seen in the paper

Experiment
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Thank you!
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Random walk： 1M tuple， pattern length = 128， R=5%

Random walk： 1M tuple， pattern length = 128， R=20%

Profiling


