
Video-Rate Stereo Matching
using MRF TRW-S Inference

on a Hybrid CPU+FPGA
Computing Platform

Jungwook Choi and Rob A. Rutenbar

{jchoi67, rutenbar}@illinois.edu

ISFPGA 2013, Feb. 12 2013

Overview

• Overall goal: Explore probabilistic inference methods in
custom hardware

• This work: Fast & high quality stereo matching via
Markov random field (MRF) inference in FPGA

• Three key contributions:

– CPU-FPGA partitioning of stereo matching procedure

– Functional level pipelining across CPU and FPGAs

– Frame level parallelization to process multi-frames in parallel

• Results: 15~40 frame/sec for QVGA stereo matching

2/17

Fast & High Quality Stereo Matching

• Variety of real-world apps demand
Fast & High Quality stereo matching

Laptop control using gestures**

(TYZX G3 EVS)

Pedestrian detection for autonomous vehicle*

(M. Gavrila, IJCV07, etc.)

* http://www.gavrila.net/Research/Pedestrian_Detection/pedestrian_detection.html

** http://www.tyzx.com/technology/gallery.html

3/17

MRF Inference for
High Quality Stereo Matching

Energy 𝐱 = ds xs
s

+ Vst xs, xt
s,t

Data cost Smoothness cost

Obj. ds(xs)

xs xt

Markov Random Field

Nodes: Data cost

Edges: Smoothness cost

3D depth map

by MRF MAP inference

• Stereo matching is mapped to
energy minimization (or inference)
on Markov random fields (MRF)

4/17
Iteration

Per pixel

depth info

MRF Inference for
High Quality Stereo Matching

Energy 𝐱 = ds xs
s

+ Vst xs, xt
s,t

Data cost Smoothness cost

Obj. ds(xs)

xs xt

Markov Random Field

Nodes: Data cost

Edges: Smoothness cost

3D depth map

by MRF MAP inference

• Stereo matching is mapped to
energy minimization (or inference)
on Markov random fields (MRF)

4/17
Iteration

Per pixel

depth info

Belief Propagation

(TRW-S) in FPGA

[Choi et al., FPL 2012]

Custom HW Accelerator for
Fast Stereo Matching

• HW impl. for computation intensive MRF infer.

• Custom HW accel. is 2~4x faster than GPU impl.

– Thanks to fully pipelined data path and streaming data access

J. Choi , and R.A. Rutenbar, “Hardware implementation of MRF MAP inference on an FPGA platform,” FPL 2012 5/17

Hybrid CPU+FPGA Platform

• Our platform: Convey HC-1

– CPU-FPGA cache-coherent virtual memory system

– Max memory BW: 1Kbit/cycle(~20GB/sec)/FPGA (runs @150MHz)

– Non-blocking FPGA function call

* Image from Convey computer 6/17

Initialize

For (idx=0; idx<numFrame; idx++)

Begin

 Get frame images (RD_IMGS)

 Compute MRF costs (COM_COST)

 Run MRF inference (MRF_INFER)

 Obtain depth result (GET_DEPTH)

 Produce depth map (WR_DEPTH)

End

CPU-FPGA Partitioning of Stereo
Matching Procedure

CPU

7/17

Initialize

For (idx=0; idx<numFrame; idx++)

Begin

 Get frame images (RD_IMGS)

 Compute MRF costs (COM_COST)

 Run MRF inference (MRF_INFER)

 Obtain depth result (GET_DEPTH)

 Produce depth map (WR_DEPTH)

End

CPU-FPGA Partitioning of Stereo
Matching Procedure

FPGA

CPU

7/17

Video-Rate Stereo Matching
CPU+FPGA System

Image

(RGB)

MRF

INFER MRF_INFER

RD_IMGS

GET_DEPTH

WR_DEPTH

COM_COST

[Data cost : init]

COM

COST

Depth

Map

Host CPU

FPGA cores

FPGA Memory (DRAM)

[Data cost : Messages]

1024

b/cy

1024

b/cy

8/17

Function Level Pipelining

I [0]

R [1] W [0]

I [1]

R [2] W [N-2]

I [N-1]

W [N-1] R [0]

Prolog Steady State Epilog

FPGA

CPU

• Apply SW pipelining technique to

overlap execution time of CPU

and FPGA functions.

Initialize

For (idx=0; idx<NumFrame; idx++)

Begin

 RD_IMGS [idx]

 COM_COST [idx]

 MRF_INFER [idx]

 GET_DEPTH [idx]

 WR_DEPTH [idx]

End

R

W

I
• While FPGA functions work on

current frame, CPU functions

process previous and next frames

in Steady State

9/17

Frame Level Parallelization

Image

[even]

MRF

INFER

[even]

RD_IMGS [even]

GET_DEPTH [even]

WR_DEPTH [even]

Datacost

[even]

COM

COST

[even]

Host CPU

FPGA cores

FPGA Memory (DRAM)

1024

b/cy

1024

b/cy

RD_IMGS [odd]

COM

COST

[even]

COM

COST

[odd]

MRF

INFER

[even]

MRF

INFER

[odd]

GET_DEPTH [odd]

WR_DEPTH [odd]

MRF

INFER

[odd]

COM

COST

[odd]

1024

b/cy

1024

b/cy

Image

[odd]

Datacost

[odd]

Depth

[even]

DC&Msg

[even]

Depth

[odd]

DC&Msg

[odd]

Frame 0
Frame 1

Frame 0
Frame 1

• 2-frame parallel example

10/17

Function Level Pipelining +
Frame Level Parallelization

W [2]
I [3]

R [4]

Steady State Stage

No frame parallelization

• If TCPU < TFPGA

pipelining hides CPU
execution time

• Frame level par.
reduces per-frame
execution time of
FPGA functions

• But CPU functions
are serialized

W [0]

I [3]

R [6]
I [5]

W [1] R [7] W [2] R [8]

3-frame parallelization

I [4]

4-frame parallelization

W [0] R [8]

I [4]
I [5]
I [6]

W [1] R [9] W [2] R [10]

I [7]

W [3] R [11]

Idle

11/17

No benefit!

Performance Result: Single Frame

Tsukuba

(384x288,16)

Real-time BP*

[Yang 2006]

Tile-based BP**

[Liang 2011]

Fast BP***

[Xiang 2012]
This work

GPU
NVIDIA GeForce

7900 GTX

NVIDIA GeForce

8800 GTS

NVIDIA GeForce

GTX 260
N/A

Iteration
(4 scales)

= (5,5,10,2)

(B, TI, TO)

= (12, 20, 5)

(3 scales)

= (9,6,2)
TO = 5

Time (msec) 80.8 97.3 61.4 26.10

Min. Energy N/A 396,953 N/A 393,434

* Q. Yang, et al., “Real-time global stereo matching using hierarchical belief propagation,” BMVC, 2006.

** Liang, et al., “Hardware-Efficient Belief Propagation,” IEEE Trans. Circ. Syst. Video Tech, May 2011.

*** X. Xiang, et al., “Real-time stereo matching based on fast belief propagation,” MACH VISION APPL, 2012 12/17

Performance Result: Video Sample

• Tasks: Flower*(360x262,16), Ume*(320x240,16)

– Require 80+ iterations to remove defect at the boundary region

Flower

(360x262x16)

Ume

(320x240x16)

* Stereo movie sample.

http://www.stereomake

r.net/sample/index.html.

Performance Result:
Function Level Pipelining

• Function level pipelining hides CPU overhead

– As frames processed, more CPU fn are overlapped by FPGA fn

I [0]

R [1] W [0]

I [1]

R [2] W [N-2]

I [N-1]
W [N-1] R [0]

Prolog Steady State Epilog

Performance Result:
Frame Level Parallelization

15/17

• Frame level parallelization speed-ups FPGA functions

– CPU fn exec time is unchanged, but minor  hidden by pipelin.

Performance Result: Video Demo

• Function level pipelining + frame level parallelization

– 3-frame parallel stereo matching, 80 iterations for each inference

– Speed: Flower 12.3 frame/sec, Ume 15.0 frame/sec

Conclusion

• Video-rate of high quality stereo matching is done using
MRF inference on a hybrid platform

• CPU-FPGA partitioned functions of stereo matching
procedure are pipelined and frame-level parallelized

• Performance results:

– Simple QVGA single frame: 40 frame/sec

– Challenging QVGA video sample: 15 frame/sec

• Fastest ever implementation of TRW-S MRF inference

17/17

Thanks !

Any Questions?

