

Side-Channel Attacks on the Bitstream Encryption Mechanism of Altera Stratix II

Amir Moradi, **David Oswald**, Christof Paar, **Pawel Swierczynski**

Chair for Embedded Security Horst Görtz Institute for IT-Security Ruhr-University Bochum

FPGAs widely used in

- Routers
- Consumer products
- Cars
- Military

Problem: FPGA design (bitstream) can be easily copied

On each power-up

Problem: Cloning

Industry's solution

Industry's solution

Previous Work

- Bitstream encryption scheme of several Xilinx product lines broken
 - Virtex 2 (3DES)
 - Virtex 4 & 5 (AES256)
 - Spartan 6 (AES256)
- Method: Side-Channel Analysis (SCA)

Side-Channel Analysis?

What about Altera?

• Target: Stratix II

- Bitstream encryption ("design security") uses AES w/ 128-bit key
- Side-Channel Analysis possible?
- **Problem:** Proprietary and undocumented mechanisms for key derivation and for encryption

RUB

Let's have a look at the Quartus II Software ...

Our approach

- Reverse-engineer proprietary mechanisms from Quartus II software
- IDA Pro (disassembler / debugger)

Why this key derivation?

- Real key cannot be set directly
- Key derivation is performed once when programming the FPGA
- Idea: When real key is extracted, KEY1 and KEY2 cannot be found
 - → Prevent cloning: real key of blank FPGA cannot be set

"real key" = AES_{KEY1}(KEY2) Is f (KEY1,KEY2) "good"?

Good idea?

- In principle: Yes
- But: AES (in this form) is not one-way:
- Pick any KEY1*
- KEY2* = AES⁻¹_{KEY1*}(real key)
- This (KEY1*, KEY2*) leads to same real key

Encrypted block i = AES128_{real key}(IV_i) ⊕ plain block i

Encryption method: AES in Counter mode

Reverse-Engineering: Summary

- All "obscurity features" reverse-engineered
- Further details: file format, coding, ...
- Black-box \rightarrow white box
- Side-channel analysis possible (target: 128-bit real key)

Side-Channel Analysis of Stratix II

Mean trace for unencrypted and encrypted bitstream

Mean trace for unencrypted and encrypted bitstream

Side-channel leakage found: HW of state after AddRoundKey for AES round 1 – round 9

With further experiments and signal processing ...

... we recovered the 128-bit AES key with 30,000 traces (~ 3 hours of measurement)

... and came up with a hypothetical architecture of the AES engine

Conclusion

- Full 128-bit AES key of Stratix II can be extracted using 30,000 traces (3 hours)
- Proprietary security mechanisms can be reverse-engineered from software
- Security by obscurity?
- Key derivation does not prevent cloning

RUB

Future Work

- Other Altera product lines?
- Understand bitstream itself
- Countermeasures?

Questions now? ... or later: pawel.swierczynski@rub.de david.oswald@rub.de amir.moradi@rub.de