CAD and Routing Architecture for Interposer-Based Multi-FPGA Systems

Andre Hahn Pereira¹ Vaughn Betz²

¹University of São Paulo

²University of Toronto

February 27, 2014 22nd ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

Introduction

Architecture Models

CAD Enhancements

Architecture Results

Conclusion and Future Work

イロン イロン イヨン イヨン 三日

 Enables the creation of large FPGAs, beyond manufacturing limit, composed of smaller dice

- Enables the creation of large FPGAs, beyond manufacturing limit, composed of smaller dice
 - Largest 2.5D FPGA at 28nm (XC7V2000T): 1954k LEs

- Enables the creation of large FPGAs, beyond manufacturing limit, composed of smaller dice
 - Largest 2.5D FPGA at 28nm (XC7V2000T): 1954k LEs
 - Largest standard FPGA at 28nm (XCE7VX980T): 979k LEs

- Enables the creation of large FPGAs, beyond manufacturing limit, composed of smaller dice
 - Largest 2.5D FPGA at 28nm (XC7V2000T): 1954k LEs
 - Largest standard FPGA at 28nm (XCE7VX980T): 979k LEs
 - Largest 2.5D FPGA at 20nm (XCVU440): 4407k LEs

- Enables the creation of large FPGAs, beyond manufacturing limit, composed of smaller dice
 - Largest 2.5D FPGA at 28nm (XC7V2000T): 1954k LEs
 - Largest standard FPGA at 28nm (XCE7VX980T): 979k LEs
 - Largest 2.5D FPGA at 20nm (XCVU440): 4407k LEs
- Enables integration of heterogeneous dice

- Enables the creation of large FPGAs, beyond manufacturing limit, composed of smaller dice
 - Largest 2.5D FPGA at 28nm (XC7V2000T): 1954k LEs
 - Largest standard FPGA at 28nm (XCE7VX980T): 979k LEs
 - Largest 2.5D FPGA at 20nm (XCVU440): 4407k LEs
- Enables integration of heterogeneous dice
- Better yield \rightarrow lower cost

Die Yield example

- ► For a defect density of 1/cm² and 6cm² dice, on a 12 inch wafer:
- ► Die yield: 0.25%, avg working dice: 0.3
- Average working systems: 0.3

イロト イポト イヨト イヨト

Die Yield example

- ► For a defect density of 1/cm² and 1.5cm² dice, on a 12 inch wafer:
- Die yield: 22%, avg working dice: 107
- Average working systems: 26.75

Reduced connectivity:

Reduced connectivity:

Connection to interposer made by microbumps

- Reduced connectivity:
 - Connection to interposer made by microbumps
- Increased delay:

- Reduced connectivity:
 - Connection to interposer made by microbumps
- Increased delay:
 - Increased wirelength and microbump capacitance

- Reduced connectivity:
 - Connection to interposer made by microbumps
- Increased delay:
 - Increased wirelength and microbump capacitance
- Virtex-7 XC7V2000T:

- Reduced connectivity:
 - Connection to interposer made by microbumps
- Increased delay:
 - Increased wirelength and microbump capacitance
- Virtex-7 XC7V2000T:
 - ▶ 280×210 total vertical wires

- Reduced connectivity:
 - Connection to interposer made by microbumps
- Increased delay:
 - Increased wirelength and microbump capacitance

イロト 不得下 イヨト イヨト 二日

- Virtex-7 XC7V2000T:
 - ▶ 280×210 total vertical wires
 - ▶ 280×48 wires crossing the interposer

- Reduced connectivity:
 - Connection to interposer made by microbumps
- Increased delay:
 - Increased wirelength and microbump capacitance

イロト 不得下 イヨト イヨト 二日

- Virtex-7 XC7V2000T:
 - ▶ 280×210 total vertical wires
 - $\blacktriangleright~280\times48$ wires crossing the interposer
 - $\blacktriangleright~{\sim}23\%$ of the wires cross the interposer

- Reduced connectivity:
 - Connection to interposer made by microbumps
- Increased delay:
 - Increased wirelength and microbump capacitance
- Virtex-7 XC7V2000T:
 - ▶ 280×210 total vertical wires
 - ▶ 280×48 wires crossing the interposer
 - \blacktriangleright ${\sim}23\%$ of the wires cross the interposer
 - \blacktriangleright ~1ns extra delay to cross

- CAD flow for interposer-based FPGAs
- Limited connectivity between dice: impact on circuit routability?

- CAD flow for interposer-based FPGAs
- Limited connectivity between dice: impact on circuit routability?
- Interposer delay: impact on circuit speed?

Introduction

Architecture Models

CAD Enhancements

Architecture Results

Conclusion and Future Work

 Used VTR flow as the base

- Used VTR flow as the base
- Modified VPR to target/model interposer-based FPGAs

- Used VTR flow as the base
- Modified VPR to target/model interposer-based FPGAs
- Required changes to placement, routing and timing analysis

- Used VTR flow as the base
- Modified VPR to target/model interposer-based FPGAs
- Required changes to placement, routing and timing analysis
- Parameters added:

- Used VTR flow as the base
- Modified VPR to target/model interposer-based FPGAs
- Required changes to placement, routing and timing analysis
- Parameters added:
 - Number of cuts

- Used VTR flow as the base
- Modified VPR to target/model interposer-based FPGAs
- Required changes to placement, routing and timing analysis

イロト 不得下 イヨト イヨト 二日

- Parameters added:
 - Number of cuts
 - % wires cut

- Used VTR flow as the base
- Modified VPR to target/model interposer-based FPGAs
- Required changes to placement, routing and timing analysis

イロト 不得下 イヨト イヨト 二日

- Parameters added:
 - Number of cuts
 - % wires cut
 - Delay added by interposer

Number of cuts

 Models the number of dice on the FPGA

Number of cuts

- Models the number of dice on the FPGA
- Cuts are equally spaced vertically

Number of cuts

- Models the number of dice on the FPGA
- Cuts are equally spaced vertically
- 1 cut \rightarrow 2 dice, 3 cuts \rightarrow 4 dice

・ロ ・ ・ (日 ・ ・ 注 ・ く 注 ・ と う へ ()
11/28

- ▶ % wires cut:
 - Models reduced connectivity between dice

・ロト ・回ト ・ヨト ・ヨト

э

- ▶ % wires cut:
 - Models reduced connectivity between dice
 - % of wires which are removed between dice

イロト 不同下 イヨト イヨト

3

- % wires cut:
 - Models reduced connectivity between dice
 - % of wires which are removed between dice

- % wires cut:
 - Models reduced connectivity between dice
 - % of wires which are removed between dice
- Increased delay:
 - Models larger delay to cross the interposer

イロト イポト イヨト イヨト

- % wires cut:
 - Models reduced connectivity between dice
 - % of wires which are removed between dice
- Increased delay:
 - Models larger delay to cross the interposer
 - ► A reasonable value is 1ns

イロト イポト イヨト イヨト

Introduction

Architecture Models

CAD Enhancements

Architecture Results

Conclusion and Future Work

Changed delays of appropriate edges

- Changed delays of appropriate edges
- Removed some edges

- Changed delays of appropriate edges
- Removed some edges
- Now router automatically adapts to the interposer

- Changed delays of appropriate edges
- Removed some edges
- Now router automatically adapts to the interposer
- Timing analysis also adapts automatically

- Changed delays of appropriate edges
- Removed some edges
- Now router automatically adapts to the interposer
- Timing analysis also adapts automatically
- Placer needs to change to:

- Changed delays of appropriate edges
- Removed some edges
- Now router automatically adapts to the interposer

イロト 不得下 イヨト イヨト 二日

- Timing analysis also adapts automatically
- Placer needs to change to:
 - Reduce nets crossing interposer

- Changed delays of appropriate edges
- Removed some edges
- Now router automatically adapts to the interposer
- Timing analysis also adapts automatically
- Placer needs to change to:
 - Reduce nets crossing interposer
 - Minimize critical path crossings of interposer

Placement: Timing cost

$Timing_Cost = \sum_{\forall i,j \subset circuit} delay(\Delta x_{ij}, \Delta y_{ij}) \times criticality(i,j)$

Placement: Timing cost

 $Timing_Cost = \sum_{\forall i,j \subset circuit} delay(\Delta x_{ij}, \Delta y_{ij}) \times criticality(i,j)$

Placement: Timing cost

$Timing_Cost = \sum_{\forall i,j \subset circuit} delay(\Delta x_{ij}, \Delta y_{ij}) \times$ criticality(i, j)

- $Timing_Cost = \sum_{\forall i,j \subset circuit} delay(\Delta x_{ij}, \Delta y_{ij}) \times criticality(i, j)$
- Need to update estimate of best case routing delay

- $Timing_Cost = \sum_{\forall i,j \subset circuit} delay(\Delta x_{ij}, \Delta y_{ij}) \times criticality(i,j)$
- Need to update estimate of best case routing delay
- $\blacktriangleright \ extra_delay(i,j) = times_crossed(i,j) \times delay_increase$

Placement: Wiring cost

Placement: Wiring cost

$$\text{ wiring_cost}_{orig} = \sum_{n=1}^{N_{nets}} q(n) \times \left[\frac{bb_x(n)}{avg_chanx_W(n)} + \frac{bb_y(n)}{avg_chany_W(n)}\right]$$

Placement: Wiring cost

$$\text{ wiring_cost_{orig} = } \\ \sum_{n=1}^{N_{nets}} q(n) \times \left[\frac{bb_x(n)}{avg_chanx_W(n)} + \frac{bb_y(n)}{avg_chany_W(n)}\right]$$

► $wiring_cost_{orig} = \sum_{n=1}^{N_{nets}} q(n) \times \left[\frac{bb_x(n)}{avg_chanx_W(n)} + \frac{bb_y(n)}{avg_chany_W(n)}\right]$ ► $wiring_cost = wiring_cost_{orig} + cut_cost$

•
$$cut_cost = \sum_{n=1}^{N_{nets}} C' \times times_crossed(n)$$

Cut costs:

- ▶ Green: 1
- ► Black: 1
- ► Blue: 0

イロト イポト イヨト イヨト

э

$$cut_cost = \sum_{n=1}^{N_{nets}} C' \times times_crossed(n)$$

•
$$cut_cost = \sum_{n=1}^{N_{nets}} C' \times bbHeight(n)$$

Cut costs:

- ► Green: 4
- ► Black: 3
- ► Blue: 4

イロト イポト イヨト イヨト

3

•
$$cut_cost = \sum_{\substack{n=1\\n=1}}^{N_{nets}} C' \times times_crossed(n)$$

•
$$cut_cost = \sum_{n=1}^{N_{nets}} C' \times bbHeight(n)$$

• $cut_cost = \sum_{n=1}^{N_{nets}} C' \times bbHeight(i) \times times_crossed(n)$

Cut costs:

- ► Green: 4
- Black: 3
- ► Blue: 0

$$\begin{array}{l} \bullet \ cut_cost = \sum_{n=1}^{N_{nets}} C' \times times_crossed(n) \\ \bullet \ cut_cost = \sum_{n=1}^{N_{nets}} C' \times bbHeight(n) \\ \bullet \ cut_cost = \sum_{n=1}^{N_{nets}} C' \times bbHeight(i) \times times_crossed(n) \\ \bullet \ Smoother \ cost \ function \ guides \ gradual \ progress \end{array}$$

Cut costs:

- ► Green: 4
- ► Black: 3
- ► Blue: 0

イロト イポト イヨト イヨト

э

 Architecture file from VTR 7.0, 40nm area and delay

- Architecture file from VTR 7.0, 40nm area and delay
- Unidirectional wires with length 4

- Architecture file from VTR 7.0, 40nm area and delay
- Unidirectional wires with length 4
- 10 fracturable 6-LUTs per logic block

5 **O** 0.50 G G G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 58000 000 0.0 п E 5 ш 000 10 пп m П Ш m П **0**0 • 8 **I** 5 пп ΠП 000 Ш Ш 000 п 0.0.0 ■s<u></u>ess**ë**eee**!**eee**!** ∎ 6 🚪 6 6

- Architecture file from VTR 7.0, 40nm area and delay
- Unidirectional wires with length 4
- 10 fracturable 6-LUTs per logic block
- 32kb RAM blocks, reconfigurable DSP blocks

い 日 0.50 G G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G
 G 58000 0.0 п 000 E 5 ш 000 10 Ш П n 🔛 Ш П Ш **0**0 • 8 000 **I** 5 П 5000 000 -----0 0 0 0 0 0 <u>|</u> - - - <u>-</u> ш ■s¦ass¦ass¦ass¦ass¦ ∎∎6∭66 ∎s¦sss¦sss¦∎∎s¦∎os¦sss¦s П

- Architecture file from VTR 7.0, 40nm area and delay
- Unidirectional wires with length 4
- 10 fracturable 6-LUTs per logic block
- 32kb RAM blocks, reconfigurable DSP blocks
- Experiments ran with the eight largest circuits from VTR, ranging from 9.1k to 153k primitives
Experiment conditions

- Architecture file from VTR 7.0, 40nm area and delay
- Unidirectional wires with length 4
- 10 fracturable 6-LUTs per logic block
- 32kb RAM blocks, reconfigurable DSP blocks
- Experiments ran with the eight largest circuits from VTR, ranging from 9.1k to 153k primitives
- Results are the geometric mean over all circuits

Enhancements results

Best placement routability cost term:

Enhancements results

- Best placement routability cost term:
- $cut_cost = \sum_{n=1}^{N_{nets}} C' \times bbHeight(i) \times times_crossed(n)$

Enhancements results

- Best placement routability cost term:
- $cut_cost = \sum_{n=1}^{N_{nets}} C' \times bbHeight(i) \times times_crossed(n)$

オロト オポト オヨト オヨト ヨー ろくで

Introduction

Architecture Models

CAD Enhancements

Architecture Results

Conclusion and Future Work

イロン イロン イヨン イヨン 三日

19/28

300 250 200 within die minW 150 50 0 0 10 20 30 50 60 70 80 90 10 % wires cut

Minimum channel width vs % wires cut

 Cutting up to 60% of wires at interposer: modest impact on routability

 $\begin{array}{l} \mbox{Delay increase} = 1 \mbox{ns and number of cuts} = 3 \\ \mbox{(4 dice)} \end{array}$

Minimum channel width vs % wires cut

 Rapid degradation after 60% wires cut, limited by interposer bandwidth

Minimum channel width vs % wires cut

Delay increase = 1ns and number of cuts = 3 (4 dice)

 Very poor routability after 80% wires cut, routability dominated by interposer bandwidth

Minimum channel width vs geometric mean of the number of wires crossing the interposer

Minimum channel width vs geometric mean of the number of wires crossing the interposer

 Gentle impact on minW

イロト イポト イヨト イヨト

Minimum channel width vs geometric mean of the number of wires crossing the interposer

 Interposer wires dominate within-die minW

Circuit speed vs interposer delay

- Interposer delay has a large impact on speed
- Critical path crosses interposer multiple times

(a)

Impact of number of dice

Number of dice has little impact on routability

Impact of number of dice

 Number of interposer wires has little effect on circuit speed

Increased delay = 1ns

Impact of number of dice

- Number of interposer wires has little effect on circuit speed
- Number of dice has a significant impact on speed

Increased delay = 1ns

Introduction

Architecture Models

CAD Enhancements

Architecture Results

Conclusion and Future Work

イロン イロン イヨン イヨン 三日

25 / 28

New cost function improves area-delay by 20%

- New cost function improves area-delay by 20%
- No drastic impact when interposer provides only 40% of intra-die routing capacity

- New cost function improves area-delay by 20%
- No drastic impact when interposer provides only 40% of intra-die routing capacity
- Routability is dominated by interposer below 40% of within-die routing capacity

- New cost function improves area-delay by 20%
- No drastic impact when interposer provides only 40% of intra-die routing capacity
- Routability is dominated by interposer below 40% of within-die routing capacity
- Critical path strongly impacted by interposer delay

- New cost function improves area-delay by 20%
- No drastic impact when interposer provides only 40% of intra-die routing capacity
- Routability is dominated by interposer below 40% of within-die routing capacity
- Critical path strongly impacted by interposer delay
- Circuit delay affected by number of dice, but not by routing capacity

 Investigate different switch structures for wires crossing the interposer

- Investigate different switch structures for wires crossing the interposer
- Investigate alternative CAD flows, such as adding a partitioning step before placement

- Investigate different switch structures for wires crossing the interposer
- Investigate alternative CAD flows, such as adding a partitioning step before placement

Bigger circuits (Titan benchmarks)

Thank you! Questions?

andre.hahn@usp.br

Extra slides

Placer routability cost enhancement results

Term	minW	crit_path(ns)	Area-delay
None	124.6	9.8	1227
# of crossings only	122.9	9.4	1157
Height only	112.7	9.8	1109
Crossings + height	107.3	9.3	996

Best performance for each term.

Constant sweep

ର୍ଚ 28/28

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Circuit characteristics

Circuit	# in	# out	#6-LUTs	#FFs	#Mults	#Mem
bgm	257	32	30089	5362	11	0
LU8PEEng	114	102	21954	6630	8	9
LU32PEEng	114	102	75530	20898	32	9
mcml	36	33	99700	53736	30	10
mkDelayWorker32B	511	553	5580	2491	0	9
stereovision0	157	197	11462	13405	0	0
stereovision1	133	197	11462	13405	152	0
stereovision2	149	182	29849	18416	564	0