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» Largest standard FPGA at 28nm (XCE7VX980T): 979k LEs
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> Enables integration of heterogeneous dice

> Better yield — lower cost
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Die Yield example

\ RIS

» For a defect density of 1/cm? and 6cm? dice, on a 12 inch
wafer:

» Die yield: 0.25%, avg working dice: 0.3

> Average working systems: 0.3



Die Yield example

» For a defect density of 1/cm? and 1.5¢m? dice, on a 12 inch
wafer:

» Die yield: 22%, avg working dice: 107
> Average working systems: 26.75
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Interposer challenges

» Reduced connectivity:

>

Connection to interposer made by microbumps

> Increased delay:

>

Increased wirelength and microbump capacitance

> Virtex-7 XC7V2000T:

>

>
>
>

280 x 210 total vertical wires

280 x 48 wires crossing the interposer
~23% of the wires cross the interposer
~1ns extra delay to cross

6
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> Interposer delay: impact on circuit speed?

~
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Models overview

Used VTR flow as the base
Modified VPR to target/model interposer-based FPGAs

Required changes to placement, routing and timing analysis

v

v

v

Parameters added:

v

» Number of cuts
» % wires cut
» Delay added by interposer
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Number of cuts

» Models the number of
dice on the FPGA

» Cuts are equally spaced
vertically

» 1 cut — 2 dice, 3 cuts —
4 dice
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% wires cut & Increased delay

> % wires cut: <

» Models reduced <
connectivity between

dice » Cut wires
» % of wires which are ere
removed between dice
> Increased delay: o o o - 4L ol o o ftutline

» Models larger delay to
cross the interposer

> A reasonable value is <
1ns >
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Required changes

» Changed routing resource graph

Changed delays of appropriate edges

» Removed some edges

» Now router automatically adapts to the interposer
» Timing analysis also adapts automatically

v

» Placer needs to change to:

» Reduce nets crossing interposer
» Minimize critical path crossings of interposer
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Placement: Timing cost

> Timing_Cost = ZWJCC”W“ delay(Ax;j, Aygj) x
criticality(i, j)
> Need to update estimate of best case routing delay

> extra_delay(i, j) = times_crossed(i, j) x delay_increase
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Placement: Wiring cost

> wWiring_costorig =
nets bb:c bb
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Placement: Wiring cost

> wWiring_costorig =
Nnets bbg (1) bby (n)
Zn:l q(n) x [avg,chanx,W(n) + avg,chany,W(n)]
> wiring-cost = wiring_costyrig + cut_cost
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Tested wiring costs
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Tested wiring costs

> cut_cost = fog

ets

i C" x times_crossed(n)

> cut_cost = Y et O x bbHeight(n)

EEEE
EEEE
il

B

]

-

IEEE
DEDD
SR

i
]
]

Cut costs:
> Green: 4
» Black: 3
> Blue: 4



Tested wiring costs
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Tested wiring costs

> cut_cost = EZXQ?S C’ X times_crossed(n)
> cut_cost = Y "<t O x bbHeight(n)

> cut_cost = Y.<t O x bbHeight(i) x times_crossed(n)

» Smoother cost function guides gradual progress
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» 10 fracturable 6-LUTs per logic

block
» 32kb RAM blocks, reconfigurable

DSP blocks
» Experiments ran with the eight

ranging

largest circuits from VTR,

from 9.1k to 153k primitives

» Results are the geometric mean

over all circuits
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Enhancements results

» Best placement routability cost term:

> cut_cost = EZXQ?S C’ x bbHeight(i) x times_crossed(n)
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Routability vs. Interposer Wiring Bandwidth
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Routability vs. Interposer Wiring Bandwidth
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Routability vs. Interposer Wiring Bandwidth
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Routability vs. Interposer Wiring Bandwidth

Minimum channel width vs geometric mean of
the number of wires crossing the interposer
> Interposer wires
dominate within-die
220 minW

250
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within die minwW

130 .
Monolithic
FPG,

100
40 50 60 70 80 90 100 110

Number of wires crossing the interposer
Delay increase = 1ns and number of cuts = 3
(4 dice)

21/28



Circuit speed vs interposer delay

Critical path delay(ns)
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» Interposer delay has
a large impact on
speed

» Critical path crosses
interposer multiple
times

22/28



Impact of number of dice
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little effect on
circuit speed
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a significant impact

on speed
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Conclusion

» New cost function improves area-delay by 20%

» No drastic impact when interposer provides only 40% of
intra-die routing capacity

» Routability is dominated by interposer below 40% of
within-die routing capacity

» Critical path strongly impacted by interposer delay

» Circuit delay affected by number of dice, but not by routing
capacity
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Future work

Interposer wires are scarce...

» Investigate different switch structures for wires
crossing the interposer

» Investigate alternative CAD flows, such as
adding a partitioning step before placement

Bigger circuits (Titan benchmarks)



Thank you!
Questions?

andre.hahn®usp.br

28 /28



<

=]

3

“F

<

Q>
28 /28



Placer routability cost enhancement results

‘ Term ‘ minW ‘ crit_path(ns) ‘ Area-delay
None | 124.6 9.8 1227

# of crossings only | 122.9 9.4 1157
Height only | 112.7 9.8 1109
Crossings + height | 107.3 9.3 996

Best performance for each term.
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Constant sweep
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Circuit characteristics

Circuit # in | # out | #6-LUTs | #FFs | #Mults | ##Mem
bgm 257 32 30089 | 5362 11 0
LUSPEEng 114 102 21954 | 6630 8 9
LU32PEEng 114 102 75530 | 20898 32 9
mcml 36 33 99700 | 53736 30 10
mkDelayWorker32B | 511 553 5580 | 2491 0 9
stereovision(Q 157 197 11462 | 13405 0 0
stereovisionl 133 197 11462 | 13405 152 0
stereovision2 149 182 20849 | 18416 564 0
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