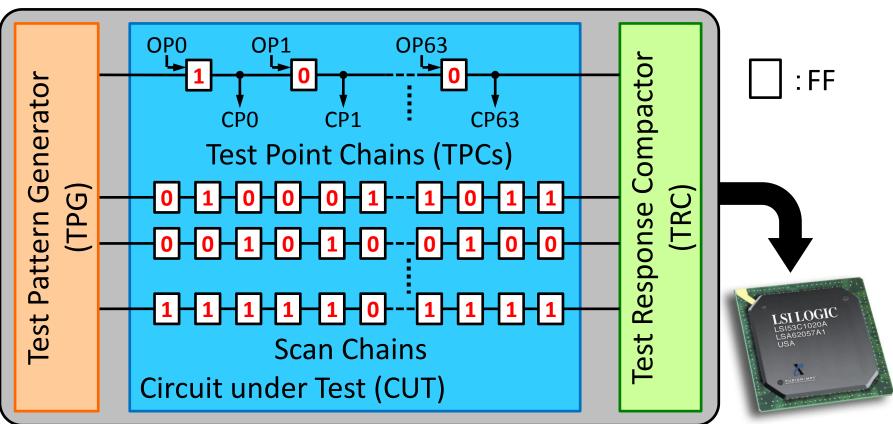
Memory Block Based Scan-BIST Architecture for Application-Dependent FPGA Testing

<u>Keita Ito</u>, Tomokazu Yoneda, Yuta Yamato, Kazumi Hatayama, and Michiko Inoue

NAIST

Nara Institute of Science and Technology

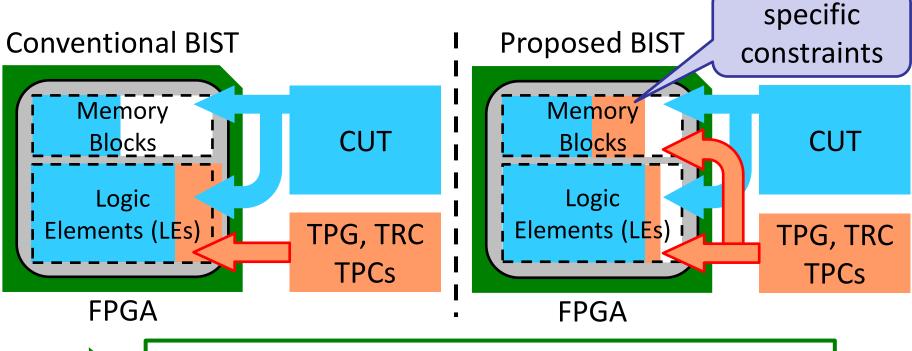

- Ensure in-field reliability of application circuits on FPGA
 - Concerns: Delay faults due to transistor aging
 - Solution for ASIC: scan-BIST

BIST: Built-In Self-Test

- Propose FPGA-specific scan-BIST architecture
 - Reduce resource utilization for scan-BIST architecture
 - Improve test quality

- Widely used infrastructure for test of ASIC
- Ensure in-field reliability
 - Tester circuits are implemented on a VLSI

- Problems of scan-BIST for FPGA testing
 - Target of conventional BIST is ASIC
 - FPGA is not a scan-ready device
 - Many logic elements (LEs) are required to implement scan chains, TPG, TRC and TPCs


Large Logic Elements overhead

- Challenge
 - FPGA-specific scan-BIST architecture
 - Area-efficient architecture

Reduce Logic Elements usage

- Memory Block-based BIST Architecture
 - Use shift register on memory blocks
 - Need to satisfy specific design constraints

Proposed BIST satisfies the constraints

- Proposed BIST can:
 - 1. reduce the LE usage by using memory blocks
 - 2. achieve higher fault coverage

Design	b17 with scan	Conventional BIST	Proposed BIST	
Resource for Shift Registers	-	LEs	LEs	Memory Blocks
Total LEs	9,334	9,493(<mark>+159</mark>)	9,911(<mark>+577</mark>)	9,550(<mark>+216</mark>)
Total FFs	1,317	1,489	1,997	1,333
Total Memory Bits	0	0	0	424
Fault Coverage	-	49.43 %		54.47 %

- Conventional Technology
 - Scan-BIST and Test point insertion
- Proposed Method
 - Memory block based scan-BIST architecture
 - Test Application Scheme
- Experimental Results
 - Achieve higher fault coverage
 - Reduce the logic elements usage
- Future Work

Please visit our poster