

FPGAs in the Data Center

FPGA 2014 Workshop

P.K.Gupta Intel Data Center Group 2014-02-26 p.k.gupta@intel.com

Accelerators Motivation

- Enhanced Performance: Accelerators compliment CPU cores to meet market needs for performance of diverse workloads in the Data Center:
 - Enhance single thread performance with tightly coupled accelerators or compliment multi-core performance with loosely coupled accelerators via PCIe or QPI attach
- Move to Heterogeneous Computing: Moore's Law continues but demands radical changes in architecture and software.
 - Architectures will go beyond homogeneous parallelism, embrace heterogeneity, and exploit the bounty of transistors to incorporate application-customized hardware.

FPGA Market

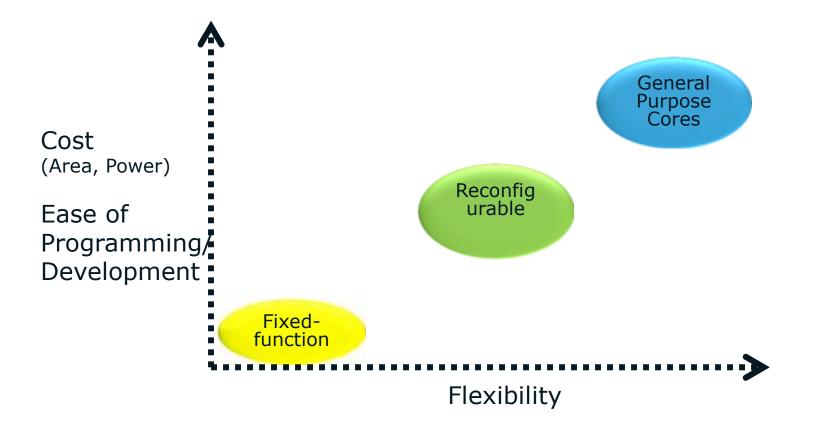
- Total FPGA Market in 2014 : ~\$5.1B
- Data Processing: \$304m ~6% of total

	2011	2012	2013	2014	2015	2016	2017
Communications	2,253	2,065	2,158	2,339	2,565	2,790	2,986
Consumer	406	406	378	456	519	598	660
Data Processing	359	260	270	304	352	387	418
Automotive	154	148	164	185	229	285	361
Industrial	1,033	976	1,000	1,158	1,311	1,462	1,584
Military/Civil Aerospace	615	571	596	664	735	802	867
Total FPGA/PLD	4,820	4,426	4,566	5,105	5,710	6,324	6,877

Estimated Worldwide FPGA/PLD Consumption by Application Market, 2011-2017 (Millions of Dollars)

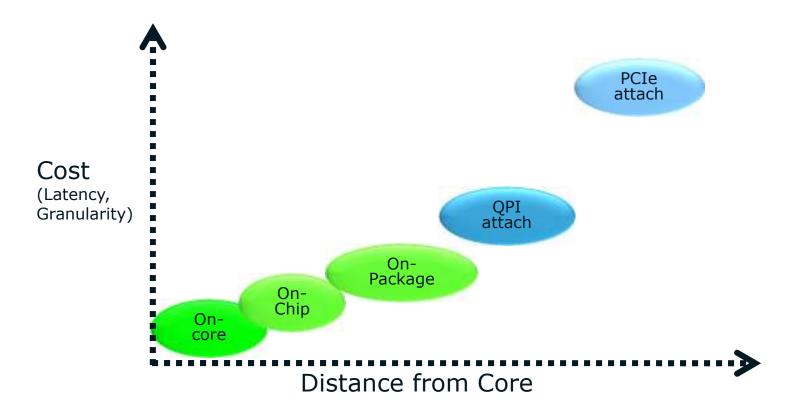
• Servers : \$71m

Source : Gartner


Which Data Center Applications?

Berkeley's 13 Dwarfs

Category	Examples	Data Center ?
Dense Linear Algebra	Gaussian Elimination, K-means	
Sparse Linear Algebra	Finite Element Analysis, PDE	
Spectral Methods	FFT	
N-Body Methods	Molecular Dynamics	
Structured Grids	Image Processing, Physics	
Unstructured Grids	Computational Fluid Dynamics	
Map Reduce	Distributed Searching, Monte Carlo Simulations	
Combinational Logic	CRC, Checksums, AES, Hashing,	
Graph Traversal	Search, Sort	
Dynamic Programming	Genome string matching	
Graphical Models	Neural Networks, HMM, Viterbi	
Backtracking / B&B	Integer Linear Programming	
Finite State Machines	Video codecs, Data Mining	

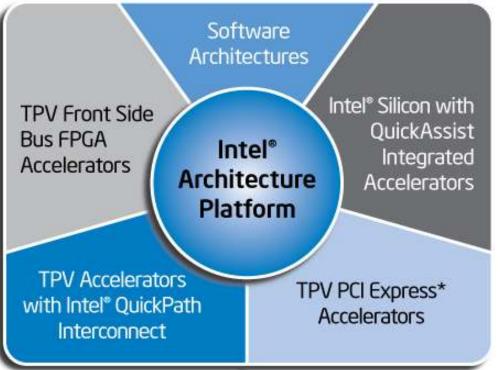


Accelerator Architecture

Performance Efficiency: Performance/Watt, Performance/\$ Programming Complexity : Effort, Cost

Accelerator Attach

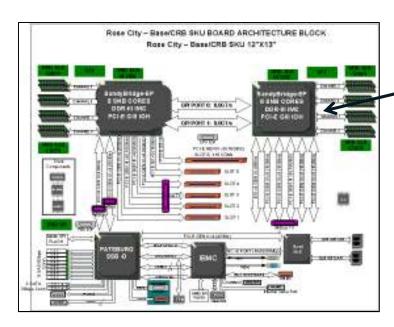
Best attach technology might be application or even algorithm dependent

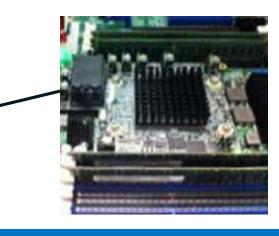

Programming Model

- Data Movement
 - In-line
 - Accelerator processes data fully or partially from direct I/O
 - Shared Virtual Memory :
 - Virtual addressing eliminates need for pinning memory buffers
 - Zero-copy data buffers
- Interaction between Core and Accelerator
 - Off-load
 - Hybrid : algorithm implemented on host and accelerator

SVM and Hybrid processing enabled with coherency

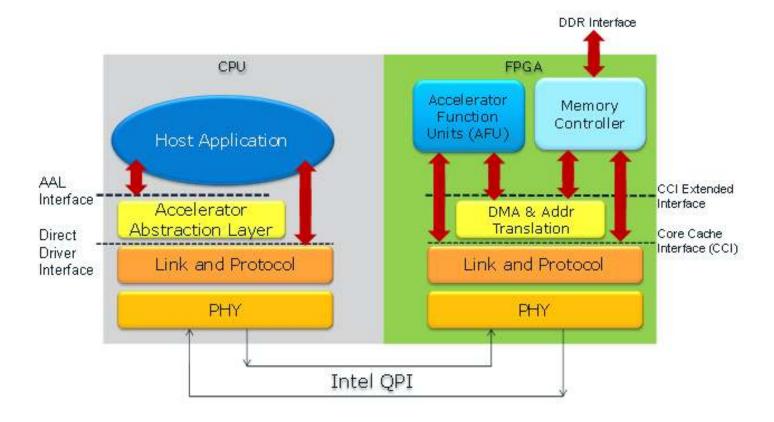
Intel[®] QuickAssist Technology – Comprehensive Approach to Acceleration




- Multiple accelerator and attach options with software and ecosystem support
- Performance and scalability based on customer needs and priorities

Includes Xeon + FPGA platforms for acceleration of workloads in the Data Center

QPI-FPGA Romley-EP 2S Platform



Platform Details

Server	Canoe Pass (Production Platform from EPSD)
ΙΑ	Sandy Bridge-EP (E5-2600) Ivy Bridge-EP (E5 2600 v2)
Chipset	Patsburg
Interconnect	QPI 1.1 @ 6.4 GT/s full width (target 8.0 GT/s at full width)
FPGA Module	Altera : Stratix V Xilinx : Virtex 7
Features	Config Agent, Caching Agent, Home Agent, Memory Controller
Availability	SNB-EP :, IVB-EP
Optional	 Ethernet 10G port to FPGA PCIe connection to Socket R
	(Intel/

Intel[®] QuickAssist Technology – FPGA Reference Stack

Published interfaces (AAL on CPU and CCI on FPGA) provide portability of applications across platforms and technologies.

Intel® Commitment to Intel® QuickAssist Technology

Enabling of FPGA Vendors to support QPI attach :

- QPI/KTI Reference RTL:
 - Enable FPGA vendors (Xilinx, Altera, ...) to implement QPI/KTI PHY
 - Providing validated QPI RTL for Link and Protocol layers for integration with PHY
- Software and Applications:
 - Providing a software layer (AAL Accelerator Abstraction Layer) to the FPGA accelerator vendors to enable ease of migration and protect the software investment of end users.
 - Sample RTL and SW applications
- Verification Environment
 - Complete OVM based verification environment
- Simulation Environment
 - VCS based simulator for development of SW and RTL
- Validation Environment
 - In-socket QPI-FPGA modules with expansion boards

Summary

- Xeon+FPGA platforms available today for Data Center applications.
- Continue to enhance the performance and programmability of the platforms

