



# Analyzing the Impact of Heterogeneous Blocks on FPGA Placement Quality

Chang Xu<sup>1</sup>, Wentai Zhang<sup>1</sup>, Guojie Luo<sup>1,2</sup>

<sup>1</sup>Center for Energy-Efficient Computing and Applications (CECA), School of EECS, Peking University <sup>2</sup>PKU-UCLA Joint Research Institute in Science and Engineering



#### Modern FPGA Device



Source: Altera Stratix V FPGA Layout

Modern FPGAs are heterogeneous.
e.g., in Stratix V E, there are 359,200 ALMs,
704 DSPs, 2,640 M20Ks, etc.



## How do Heterogeneous Blocks Affect FPGA Placement?

- ◆ Pros: reduce the netlist size (in both #nets and #blocks) by about 30% compared with homogeneous implementation.
- ◆ Cons: complicate the legalization, and limit the search space.



We are interested in *quantifying* the impact!



### Previous Quantitative Optimality Study

- ◆ PEKO, [Chang et al., TCAD'04]
  - Wirelength-optimal benchmarks with blocks of equal size.
- **◆ PEKO-MS**, [Cong et al., Springer'07]
  - **Examine the optimality of mixed-size ASIC placers.**
- ◆ Constructive, [Papa et al., GLSVLSI'04]
  - Examine the constructed patterns visually.
- ◆ Datapath, [Ward et al., ISPD'11]
  - Examine the optimality of datapath placement
- Ours is the first work to construct wirelength-optimal heterogeneous FPGA placement examples.

#### **Contributions of This Work**

- ◆ Construct synthetic benchmarks with known *optimal* half-perimeter wirelength for heterogeneous FPGAs.
- **◆** Evaluate the optimality gap of two popular FPGA placers: *VPR* and *Quartus*.
- ◆ Separately analyze the optimality gap from two sources: architectural heterogeneity and netlist heterogeneity.

## Synthetic Benchmark Generation: Basic Idea



- 1. Given the reference netlist property & heterogeneous arch.
- 2. Construct optimal net implementation among its optimal rectangles, which are obtained by one-dimensional search.
- 3. The netlist with optimal HPWL is generated by implementing each net one by one.

### Synthetic Benchmark Generation

- ◆ Optimal rectangle: a rectangle with minimum half perimeter that can accommodate all types of blocks in a net.
- **♦** One-dimensional search:
  - For example, a net with 3"blue" and 2 "organge" blocks
- **◆ Repeated patterns of arch.** 
  - Reduce search space.



TABLE I RECTANGLES ACHIEVED IN THE SEARCH PROCESS BY TAKING  $S_i(S_j)$ As As STARTING POINT

| $S_i$       |          |   |   |   |   |  |
|-------------|----------|---|---|---|---|--|
| $l_x$       | 1~3      | 4 | 5 | 6 | 7 |  |
| $l_y$       | $\infty$ | 4 | 2 | 2 | 2 |  |
| $l_x + l_y$ | ∞        | 8 | 7 | 8 | 9 |  |
|             |          |   |   |   |   |  |

|             | _        |        |        |        |                         |   |
|-------------|----------|--------|--------|--------|-------------------------|---|
| $S_i$       |          | kect.1 | Lect.2 | Rect 3 |                         |   |
| $l_x^{''}$  | 1        | 2      | 3      | / 4 Y  | 5                       | 6 |
| $l_y$       | $\infty$ | 4      | 3      | 2      | 2                       | 2 |
| $l_x + l_y$ | $\infty$ | 6      | 6      | 6      | $\mathcal{J} \setminus$ | 8 |

The optimal rectangles can be explored offline and reused for the same architecture.

## Quantify the Placement Quality: Evaluation Flow





- Flow-A: homogeneous netlist with known opt. HPWL on homogeneous arch.
- ➤ Flow-B: homogeneous netlist with known opt. HPWL on heterogeneous arch.
- Flow-C: heterogeneous netlist with known opt. HPWL on heterogeneous arch.

# Quantify the Placement Quality: Optimality Gap

**♦** Wirelength Gap (WG):

$$WG = \frac{WL_{placed} - WL_{optimal}}{WL_{optimal}}$$

- **♦ WG for VPR and Quartus placer** 
  - Flow-A on VPR: avg. WG = 33%
  - Flow-B on VPR: avg. WG = 40%
  - Flow-C on VPR: avg. WG = 48%
  - Flow-C on Quartus: avg. WG = 116%

Netlist topologies are different with different flows!

### Sources of Optimality Gap

- **◆** The optimality gap comes from two sources
  - Architectural heterogeneity
    - Solution space becomes much more discrete
  - Netlist heterogeneity
    - Easier to be trapped in a local optimum

We will quantify the impacts from these two source.

## Impacts from the Two Sources: Experiment Design



- **Case-1:** the same as Flow-A.
- ➤ Case-2: based on Case-1, expanding homogeneous arch. into heterogeneous arch. by adding heterogeneous tiles.
- ➤ Case-3: based on Case-2, adding H-blocks to homogeneous netlist to generate heterogeneous netlist.
  - ➤ On average 5.2% are H-blocks



# Impacts from the Two Sources: Experimental Results



- **▶** Base: 33% WG
- > Architectural heterogeneity: an extra 25% WG
- Netlist heterogeneity: an extra 27% WG



#### **Conclusions**

- ◆ An algorithm to construct benchmarks with known optimal wirelength for heterogeneous FPGA placement.
- **♦** Benchmarking results of VPR placer shows:
  - For netlists with the same "functionality"
    - Optimality gap for homogeneous design is 33% on average
    - Optimality gap for heterogeneous design is 48% on average
    - Benefit of netlist size reduction is canceled out by heterogeneity
  - For netlists with the same size
    - Base optimality gap: 33%
    - Architectural heterogeneity: an extra 25%
    - Netlist heterogeneity: an extra 27%



### Thank you!

Synthetic Benchmarks Download

https://github.com/FPGAStudy/placement

(in VPR format and Altera VQM format)