Time Sharing of Runtime Coarse-Grain
Reconfigurable Architectures Processing
Elements in Multi-Process Systems

Benjamin Carrion Schafer
The Hong Kong Polytechnic University
Department of Electronic and Information Engineering
b.carrionschafer@polyu.edu.hk

QA PO UNIVERSITY

’ﬁLle_Lf

Outline

* Target architecture — Stream Transpose Processor
e STP configuration flow (High-Level Synthesis)

* Motivational Example for mapping multiple processes onto
the same STP core

* Proposed Sharing Method (2 phases)

— Single Process characterization
* 3 steps

— PE sharing method
* 4 steps

* Experimental Setup and Results
 Summary and Conclusions

Target Architecture

e Reconfigurable (Programmable) SoC (RSoCs)

— Include reconfigurable IPs

— Used to accelerate computational intensive function with high
parallelism (e.g image processing or DSP applications)

DSP Macros |« Data out (8bits)
—— ———
IPE"PE”PE”PEIIPE"PE"PEIIEI i Ah4Arra
1 . .
IPEIIPEIIPE”pElIpE"PE"PEIIPEI Register File

Lec] [ee] [ec] [ee] [ee] [ec] [ee] [ec] N aw [oy
<
=]
5
=

CGRA
(STP)

Core N

EHEFEEEFEEE

State Transition Controller (STC)

N | TF5 557

™™ Datain (2x8hits)

On-chip Bus

Memory

IPE"PE”PE“PEIIE"PEIEIIPEI
HEEEEEEE
[ee] [e] [ee] [ee] [pe] [eel [ee] [ee]

| DSP Macros |

Stream Transpose Processor (STP)

1. Runtime Coarse Grain Reconfigurable Architecture (1ns
to reconfigure PE functionality and routing)

2. Programmed using High-Level Synthesis (HLS)
RENESAS search [

Searches

l Products Applications Development Tools Support/Design Buy/Samples About Renesas

Home Products SoC / System LSI ASIC Programmable LSI

H B Provide feedback TEXT SIZE
STP Engine (IP Core) share QIEABEED & Pt pooe [ETHITL

Products

The STP engine is a reconfigurable processor (DRP: Dynamically Reconfigurable Processor) core that combines the flexibility of
SoC / System LSI software and the speed of hardware. The firmware defining processing can be reconfigured in an instant, allowing an almost
ASIC infinite variety of functions to be integrated into a system. A 40 nm process is currently available for ASIC

Programmable LSI

STP™ : Stream Transpose @

STP Engine (IP Core) . .
High-performance STP engine structure

XBridge ntPe | The STP engine has an array of processing elements (DRP) + DMA
Applications — lessl = controller structure
[uﬁ.‘u I P J;ﬂ P_:,:
’_9 FIE) | Data transfer (DMA) is dedicated and is divided from processing (array of
Array of PE;}E processing elements). This helps to improve perfformance and mounting
—g area efficiency. reducing the CPU workload and improving overall system
I F— I_ e } performance
10 SRAM 2pSRAM
= ——— — . B .
(=)) 6 An array of processing elements (PEs) consists of processing elements

I DMA controller
1 and memory. Memory and a multiplier encircle an array of PEs. With an

Click on image to enlarge STP engine, processing is performed in parallel using multiple computing
units and memaory, realizing higher perfformance

http://am.renesas.com/products/soc/asic/programmable/stp/index.jsp 4

Stream Transpose Processor cont.

The main building blocks are called tiles

Each tile consists of an array of 8x8 PEs. Each PE contains:

— 8-bit arithmetic logic unit (ALU), an 8-bit data manipulation unit (DMU) for
1-bit logic operations and 8-bit shifting and masking and an 8-bit flip-flop
unit (FFU).

Surrounded by embedded memory and embedded multipliers

The STP can hold up to 64 contexts in its State Transition Controller
located in the middle of the PE array

DSP Macros I Data out (8bits)

I

|- L
Tt ss
Register il

|| | | e)
' 2 | | o e [
State Transition Controller (STC)
G| |
HEEEEERE
FEEEEREE
0 |)) o

DSP Macros

ALU DMU

N | TxF 557

™™ Datain (2x8bits)

Memory /

Memory

High Level Synthesis 101

Y
- N \'ﬁ Allocation m/
+ -
- dd32s:2
Aereaay mul32s: 2
N—_
YoAB: N
XA Scheduling
F:(B+C)*X

Clock stepl 1/freq

HLS Resources Constraints

* Functional Unit Constraint file specifies how many FUs
can be instantiated = Impacts the synthesized

architecture int main(){
X = a+b;
y = e+f;
1 Adder J 2 Adders
x=a+b ST101 x=a-+b y=e+f ST101

High Level Synthesis—Min FUs

(Resource Sharing)

REG .
a UX-REG
C Source code R/eG :p\’\(
i
I~ b UX UX REG
v=e+f | ST102 REG \'
....................................... £

oy

ST101 ST102” rgm
QQ .

STP Configuration Flow

* Start with sequential

d e S C ri pt i O n i n C High-Level Synthesis
(1) Resource Allocation, (2)
Pe rfo r m H I_S : Schedulmg and (3) Bmdmg

— FSM mapped to State {@ . }

Transition Controller (STC)
— Data Path mapped to PEs Techno'ogvMappmg¢

I DSP Macros I L Data out (8hits Place and Route
| 7,/- 444444--
| H e |

a0 |[Tomw

g LY Y Y

£ "™ Datain (2x8bits) "™

8| el [] re]] [£ ¥
SnmnaEmE //sw
HEEEHREE |

.

Motivational Example

* Mapping multiple processes onto the same STP
e Each process synthesized (HLS) individually
* PE usage = PEp;matPEpsmax) @ HLS GOAL is to minimize PE

PEs

PE Process 1 | PEs o Process 2 - B vcros B
s A 1 CeRg
é

4 5 6

1 2 3 time 1 2 3 time HEEE
(#context) b (#contexts) L —~~~_E!DE|E L
(@) ®) S—
PEs &
PE , Process 1+ Process 2 .

CMEK] = = = = = = — — _‘ ’ ; ’ ‘ i

II”}¥ Hip =

6 7 8 9 10 11 12 13 12 time —DEFFDEE_

(d) (#contexts) ©

10

Main Idea Behind this Work

* Exploit the imbalance in PE usage across contexts to
share PEs across processes

* No optimizations possible of PE usage optimized across

contexts

PEs

ASEELIN

Ideal synthesis result

60

50

40

30

20

10 -

0 =

M PE(Avg)

W STDev (avg)

Kasumi Snow3G Maha FIR Sobel Decimation Interpolation

Actual Results

11

Proposed Flow Multi-Processes PE

Sharing (MPPE Share)

* Align contexts by setting different reset conditions

e 2 Phases:

1. Single Process characterization
2. PEalignment

PEs

1 2 3 4 5 Time
(#contexts)

PEs

Application 2 I

TIIETX .

3 5 Time
(#contexts)

PEs

Imhfm,

PEs 1 2 3 4 5 Time
(#contexts)
?TITTX_,
1 2 3 4 3 Time
Reset (#contexts)
condition

I et Ml I

IEEEE |-

: IGEEEE
AR
| EEEEEEEE L
[> |

12

Phase 1 — Single Process Characterization

C, C, C,
* Perform HLS for each Y y y
process in the system e T

* Annotate the PEs ilf"¢ """ N ‘l’h """"" |
used in each context |, = - e :
. l ‘T a | " &,
(location) ; ~ &), | < &),
e FU design space
exploration 5 |
(optional): | |

— Reduce the number
of FUs by 20% to
increase resource
sharing and thus
reduce the area

Phase 2: PE Allocation Method — Pruned

Search

* 4 Steps
— Step 1 : Latency adjustment
— Step 2: PE Sharing Slack Computation (PESS)
— Step 3:Extract contexts with Max and Min PE

— Step 4: Context alignments

* Find contexts with large PE usage and context of
process with low PE usage

* Check if alignment is valid = Manhattan distance
computation

14

PE Allocation — Step 1 Latency Adjustment

* |In order to fully evaluate the effects of PEs sharing =» make all

processes of equal latency
 Computing the least common multiple (Icm)

* lcm smallest positive integer that is divisible by both Latency A

of process 1 and Latency B of process 2
 Processes’ contexts are extended N times :
— Number copies process N = lcm/#contexts.

PEs
Process 1
= Process 1 | PEpimad) - - -
PEpl I |
1
i R 1!
AEERA .
—> 1 2 3 4 5 6 time
1 2 3 4 5 6 time
Process 2 PEs Process 2
PEs

Ilcm =6
N=6/6=1

Icm =6
N=6/3=2

15

PE Allocation — Step 2 PE Sharing Slack

* PE sharing slack (PESS) = Variance in PE usage in each process
* Calculated for each process and sort processes based on PESS
* Used as pairing criteria for PE sharing

* The higher the PESS is, the
— High PESS -> higher potential for possible sharing is

— PESS =0, then all the contexts require the same amount of PEs and
there is no possibility for PE sharing

PEs

- —e
~ —e
wi—e
ol)

T

ti me
(Hcontext)

'rTTI

1 2 3 4 tlme

(#context)

PESS = high PESS=0

16

PE Allocation — Step 3 Max/Min PE usage

Contexts

* Extract from each process the N Contexts with
highest PE usage and M contexts with lowest
PE usage

e Two cases for N,M :
— PEavg £2 XPEstdev = More contexts in the list

— PEavg + 3 xPEstdev = Less contexts in the list

p—

PEs
______ __.__________ +2xPEstdev ‘l"""!"""————— +3xPEstdev

— ____T — — PEavg PEavg
| ? | ‘ | ? |T R -2xPEstdev _ 'T' _¥_ 1 _’ l_ ’_II L A PEstdey
4 1 2 5
5

>
3 4 5 b Time

(#contexts)

PE Allocation — Step 4 Context Alignments

* Find Context Alignment point by considering only the contexts selected
in Step 3

e Pairs of processes with high slack are considered first

* Once the alignment of the contexts is done:
- check if the PE assignment is valid or not

—> critical path is estimated based on the Manhattan distance of the longest
path (due to the regularity of the CGRA it is easy to estimate this delay)

PEs

M[hm’f. PES'rThrTrT..

3 4 5 Ti
- u (#]'?;fltcxts PEs 1 2| 3) 4| 5 Time
PEs / R | I (#contexts)
L T |T I T T N > _Y_J T I [T4 TS X Tin.fe
l 1 J2 EDEEE Time Reset (#contexts)

(#contexts) .
: condition 8

Experimental Results Setup

7 Synthesizable SystemC Benchmarks (www.S2CBench.org) rewritten in ANSI-C
HLS using 50 MHz as target frequency (20ns)
Renesas Electronics Musketeer 1.23

Benchmark | #Lines DSE DSE Run [s]
FIR 54 3 468
maha 62 4 414
sobel 87 4 786
snow 3G 307 5 900
decim 220 6 [.260
kasumi 221 7 1,500
interp 91 3 1.926
Benchmark S1 52 S3 S4 S5 S6 S7 S8
FIR | | | | | I I |
maha 1 1 1 1 1 I | 1
sobel 1 1 1 1 I | 1
snow3G 1 1 1 I | 1
decim 1 1 | 1
kasumi 1 1
interp I I |
Total PEs 27 40 i 166 187 174 242 240

19

EIENERE S

1.2

0.8

0.6

0.4

51 52 53

Two set of experiments conducted
a) With latency constraint (the fastest design reported by the DSE is Used)
b) Without latency constraint (results of DSE used and smallest design reported)
MPPE_share3 = =+3STDev, MPPE2=12STDev

Compared against

— initial configuration (initial) — No PE sharing
— Exhaustive search — Optimal solution (Executed for 5 days-didn’t finish for s7 and s8)

m Initial mExhaustive MPFPE_Shared m MPPE_Share2

54 56

(a)

Single latency

s7 S8 Ave

o

1.2

M |nitial = Exhaustive MPPE_Share3 B MPPE_Share2

1

=

=)

0.4
51 52 53 54 55 86 57 58 Avg

DSE results &

Experimental Results cont.

* Detailed experimental results

hare2()

Initial (1) Exhaustjve (2) MPPE_Share3 (3) MPPE_! A PEs
PEs Run [s] | PEs Run [s] PEs Run [s] PEs Apps1—2 | Aprsi—3 | ApPEs1—4 | Aprs2_3 | ApEs2_3a
[%] [%] [%] [74] [%]
S1 27 1 24 1 29 1 24 -13 0 -13 11 0
52 40 1 37 1 39 1 37 -8 -3 -8 5 0
53 08 101 95 1 95 1 95 -3 -3 -3 0 0
54 166 9.463 135 1 158 1 143 -23 -5 -16 15 [3)
S5 187 286,936 152 1 167 1 159 -23 -12 -18 9 4
S6 174 351,789 138 1 151 1 145 -26 -15 -20 9 5
57 242 3 209 4 208 -16 -16
S8 249 4 221 7 213 -13 -17
Avg. -16 -8 -14 8 2
Geomean 117 316 79 1 108 2 103
(B)
Initial (1) Exhaustjve (2) MPPE_Share3 (3) MPPE_Share2(4) A PEs
PEs Run [s] || PEs Run [s] PEs Run [s] PEs Apps1—2 | Aprsi—3 | ApPEs1—4 | Apre2_3 | ApEs2_3a
[%] [%] [%] (%] [%]
S1 20 10 18 1 19 1 18 -11 -5 -11 5 0
52 30 45 23 1 25 1 23 -30 -20 -30 8 0
S3 79 7.987 58 1 69 1 62 -36 -14 27 16 6
S4 144 95,979 105 49 125 56 119 =37 -15 -21 16 12
S5 158 67 131 98 119 -21 -33
S6 155 83 134 132 127 -16 -22
57 220 267 197 452 184 -12 -20
S8 223 351 201 568 191 -11 -17
Avg. -29 -14 -23 11 5
Geomean LS 766 40 20 85 26 80

21

Summary and Conclusions

* Presented a method for sharing PE in multi-
processes systems synthesized individually in
runtime reconfigurable CGRA

* |Input each synthesized design or DSE trade-off
curve

* Average PE savings of 14% and only 2% worse
than the optimal solution for fixed latency.

22

