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Outline

• Target architecture – Stream Transpose Processor
• STP configuration flow (High-Level Synthesis)
• Motivational Example for mapping multiple processes onto 

the same STP core
• Proposed Sharing Method (2 phases)

– Single Process characterization
• 3 steps

– PE sharing method
• 4 steps

• Experimental Setup and Results
• Summary and Conclusions



Target Architecture

• Reconfigurable (Programmable) SoC (RSoCs)
– Include reconfigurable IPs 
– Used to accelerate computational intensive function with high 

parallelism (e.g image processing or DSP applications)
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Stream Transpose Processor (STP)

1. Runtime Coarse Grain Reconfigurable Architecture (1ns 
to reconfigure PE functionality and routing)

2. Programmed using High-Level Synthesis (HLS)

4http://am.renesas.com/products/soc/asic/programmable/stp/index.jsp



Stream Transpose Processor cont.

• The main building blocks are called tiles
• Each tile consists of an array of 8x8 PEs. Each PE contains:

– 8-bit arithmetic logic unit (ALU), an 8-bit data manipulation unit (DMU) for 
1-bit logic operations and 8-bit shifting and masking and an 8-bit flip-flop 
unit (FFU).

• Surrounded by embedded memory and embedded multipliers
• The STP can hold up to 64 contexts in its State Transition Controller 

located in the middle of the PE array
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High Level Synthesis 101
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HLS Resources Constraints

• Functional Unit Constraint file specifies how many FUs 
can be instantiated  Impacts the synthesized 
architecture
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High Level Synthesis–Min FUs 
(Resource Sharing)
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STP Configuration Flow

• Start with sequential 
description in C

• Perform HLS:

– FSM mapped to State 
Transition Controller (STC)

– Data Path mapped to PEs
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ANSI C
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Motivational Example

• Mapping multiple processes onto the same STP
• Each process synthesized (HLS) individually
• PE usage = PEP1(max)+PEP2(max)  HLS GOAL is to minimize PE(max)
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Main Idea Behind this Work

• Exploit the imbalance in PE usage across contexts to 
share PEs across processes

• No optimizations possible of PE usage optimized across 
contexts
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Ideal synthesis result 
Actual Results 



Proposed Flow Multi-Processes PE 
Sharing (MPPE Share)
• Align contexts by setting different reset conditions
• 2 Phases:

1. Single Process characterization
2. PE alignment
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Application 1

Application 2



Phase 1 – Single Process Characterization

• Perform HLS for each 
process in the system

• Annotate the PEs 
used in each context 
(location)

• FU design space 
exploration 
(optional):
– Reduce the number 

of FUs by 20% to 
increase resource 
sharing and thus 
reduce the area

13



Phase 2: PE Allocation Method – Pruned 
Search

• 4 Steps

– Step 1 : Latency adjustment

– Step 2: PE Sharing Slack Computation (PESS)

– Step 3:Extract contexts with Max and Min PE

– Step 4: Context alignments

• Find contexts with large PE usage and context of 
process with low PE usage 

• Check if alignment is valid Manhattan distance 
computation 
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PE Allocation – Step 1 Latency Adjustment

• In order to fully evaluate the effects of PEs sharing make all 
processes of equal latency

• Computing the least common multiple (lcm)
• lcm smallest positive integer that is divisible by both Latency A

of process 1 and Latency B of process 2
• Processes’ contexts are extended N times :

– Number copies process N = lcm/#contexts.
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lcm =6
N=6/6=1
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PE Allocation – Step 2 PE Sharing Slack 

• PE sharing slack (PESS) = Variance in PE usage in each process
• Calculated for each process and sort processes based on PESS
• Used as pairing criteria for PE sharing
• The higher the PESS is, the

– High PESS -> higher potential for possible sharing is
– PESS = 0, then all the contexts require the same amount of PEs and 

there is no possibility for PE sharing
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PESS = high PESS = 0



PE Allocation – Step 3 Max/Min PE usage 
Contexts 

• Extract from each process the N Contexts with 
highest PE usage and M contexts with lowest 
PE usage 

• Two cases for N,M :

– PEavg ±2 xPEstdev More contexts in the list

– PEavg ± 3 xPEstdev  Less contexts in the list
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PE Allocation – Step 4 Context Alignments

• Find Context Alignment point by considering only the contexts selected 
in Step 3

• Pairs of processes with high slack are considered first
• Once the alignment of the contexts is done:

 check if the PE assignment is valid or not 
 critical path is estimated based on the Manhattan distance of the longest 
path (due to the regularity of the CGRA it is easy to estimate this delay)
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Experimental Results Setup

• 7 Synthesizable SystemC Benchmarks (www.S2CBench.org) rewritten in ANSI-C
• HLS using 50 MHz as target frequency (20ns)
• Renesas Electronics Musketeer 1.23
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Experimental Results

• Two set of experiments conducted
a) With latency constraint (the fastest design reported by the DSE is Used)
b) Without latency constraint (results of DSE used and smallest design reported)

• MPPE_share3 = =±3STDev, MPPE2=±2STDev
• Compared against 

– initial configuration (initial) – No PE sharing
– Exhaustive search – Optimal solution (Executed for 5 days-didn’t finish for s7 and s8)
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Experimental Results cont.

• Detailed experimental results
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Summary and Conclusions

• Presented a method for sharing PE in multi-
processes systems synthesized individually in 
runtime reconfigurable CGRA

• Input each synthesized design or DSE trade-off 
curve

• Average PE savings of 14% and only 2% worse 
than the optimal solution for fixed latency.
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