
Time Sharing of Runtime Coarse-Grain
Reconfigurable Architectures Processing

Elements in Multi-Process Systems

Benjamin Carrion Schafer
The Hong Kong Polytechnic University

Department of Electronic and Information Engineering
b.carrionschafer@polyu.edu.hk

@DARC_lab

2

Outline

• Target architecture – Stream Transpose Processor
• STP configuration flow (High-Level Synthesis)
• Motivational Example for mapping multiple processes onto

the same STP core
• Proposed Sharing Method (2 phases)

– Single Process characterization
• 3 steps

– PE sharing method
• 4 steps

• Experimental Setup and Results
• Summary and Conclusions

Target Architecture

• Reconfigurable (Programmable) SoC (RSoCs)
– Include reconfigurable IPs
– Used to accelerate computational intensive function with high

parallelism (e.g image processing or DSP applications)

3

Stream Transpose Processor (STP)

1. Runtime Coarse Grain Reconfigurable Architecture (1ns
to reconfigure PE functionality and routing)

2. Programmed using High-Level Synthesis (HLS)

4http://am.renesas.com/products/soc/asic/programmable/stp/index.jsp

Stream Transpose Processor cont.

• The main building blocks are called tiles
• Each tile consists of an array of 8x8 PEs. Each PE contains:

– 8-bit arithmetic logic unit (ALU), an 8-bit data manipulation unit (DMU) for
1-bit logic operations and 8-bit shifting and masking and an 8-bit flip-flop
unit (FFU).

• Surrounded by embedded memory and embedded multipliers
• The STP can hold up to 64 contexts in its State Transition Controller

located in the middle of the PE array

5

6

High Level Synthesis 101

+,-,*,/
Delay
Area

int A,B,C,D;
int E,F;
main(){
int x;
X=A+B;
E=X*D;
F=(B+C)*X
}

Const
add32s : 2
mul32s : 2

Clock step1

freq

1/freq

+

x +

x

D A B C

E F

Allocation

Scheduling

+

x +

x

D A B C

BindingAdd #1

Mult #1

Add #2

Mult #2

HLS Resources Constraints

• Functional Unit Constraint file specifies how many FUs
can be instantiated  Impacts the synthesized
architecture

7

ＳＴ１０２

ＳＴ１０１ｘ＝ａ＋ｂ

ｙ＝ｅ＋ｆ

ＳＴ１０１ｘ＝ａ＋ｂ ｙ＝ｅ＋ｆ

1 Adder 2 Adders

int main(){
x = a+b;
y = e+f;

}

High Level Synthesis–Min FUs
(Resource Sharing)

8

ａ

ｂ

ｘ

＋

ＲＥＧ

ＲＥＧ

ＲＥＧＭＵＸ

ｅ

ｆ
ｙ

ＲＥＧ

ＲＥＧ

ＲＥＧＭＵＸ

ＭＵＸ

ＭＵＸ

ＦＳＭ

Data Path

ＳＴ１０１ ＳＴ１０２

ＳＴ１０２

ＳＴ１０１ｘ＝ａ＋ｂ

ｙ＝ｅ＋ｆ

Ｃ Source code

STP Configuration Flow

• Start with sequential
description in C

• Perform HLS:

– FSM mapped to State
Transition Controller (STC)

– Data Path mapped to PEs

9

ANSI C

High-Level Synthesis

(1) Resource Allocation, (2)

Scheduling and (3) Binding

Technology Mapping

Place and Route

STC code PE code

FSM
Context N

STP

STC

STC
code

PE
config

PE config

Motivational Example

• Mapping multiple processes onto the same STP
• Each process synthesized (HLS) individually
• PE usage = PEP1(max)+PEP2(max)  HLS GOAL is to minimize PE(max)

10

Main Idea Behind this Work

• Exploit the imbalance in PE usage across contexts to
share PEs across processes

• No optimizations possible of PE usage optimized across
contexts

11

Ideal synthesis result
Actual Results

Proposed Flow Multi-Processes PE
Sharing (MPPE Share)
• Align contexts by setting different reset conditions
• 2 Phases:

1. Single Process characterization
2. PE alignment

12

Application 1

Application 2

Phase 1 – Single Process Characterization

• Perform HLS for each
process in the system

• Annotate the PEs
used in each context
(location)

• FU design space
exploration
(optional):
– Reduce the number

of FUs by 20% to
increase resource
sharing and thus
reduce the area

13

Phase 2: PE Allocation Method – Pruned
Search

• 4 Steps

– Step 1 : Latency adjustment

– Step 2: PE Sharing Slack Computation (PESS)

– Step 3:Extract contexts with Max and Min PE

– Step 4: Context alignments

• Find contexts with large PE usage and context of
process with low PE usage

• Check if alignment is valid Manhattan distance
computation

14

PE Allocation – Step 1 Latency Adjustment

• In order to fully evaluate the effects of PEs sharing make all
processes of equal latency

• Computing the least common multiple (lcm)
• lcm smallest positive integer that is divisible by both Latency A

of process 1 and Latency B of process 2
• Processes’ contexts are extended N times :

– Number copies process N = lcm/#contexts.

15

lcm =6
N=6/6=1

lcm =6
N=6/3=2

PE Allocation – Step 2 PE Sharing Slack

• PE sharing slack (PESS) = Variance in PE usage in each process
• Calculated for each process and sort processes based on PESS
• Used as pairing criteria for PE sharing
• The higher the PESS is, the

– High PESS -> higher potential for possible sharing is
– PESS = 0, then all the contexts require the same amount of PEs and

there is no possibility for PE sharing

16

PESS = high PESS = 0

PE Allocation – Step 3 Max/Min PE usage
Contexts

• Extract from each process the N Contexts with
highest PE usage and M contexts with lowest
PE usage

• Two cases for N,M :

– PEavg ±2 xPEstdev More contexts in the list

– PEavg ± 3 xPEstdev  Less contexts in the list

17

PE Allocation – Step 4 Context Alignments

• Find Context Alignment point by considering only the contexts selected
in Step 3

• Pairs of processes with high slack are considered first
• Once the alignment of the contexts is done:

 check if the PE assignment is valid or not
 critical path is estimated based on the Manhattan distance of the longest
path (due to the regularity of the CGRA it is easy to estimate this delay)

18

Experimental Results Setup

• 7 Synthesizable SystemC Benchmarks (www.S2CBench.org) rewritten in ANSI-C
• HLS using 50 MHz as target frequency (20ns)
• Renesas Electronics Musketeer 1.23

19

Experimental Results

• Two set of experiments conducted
a) With latency constraint (the fastest design reported by the DSE is Used)
b) Without latency constraint (results of DSE used and smallest design reported)

• MPPE_share3 = =±3STDev, MPPE2=±2STDev
• Compared against

– initial configuration (initial) – No PE sharing
– Exhaustive search – Optimal solution (Executed for 5 days-didn’t finish for s7 and s8)

20
(a) (b)

Single latency DSE results

Experimental Results cont.

• Detailed experimental results

21

Summary and Conclusions

• Presented a method for sharing PE in multi-
processes systems synthesized individually in
runtime reconfigurable CGRA

• Input each synthesized design or DSE trade-off
curve

• Average PE savings of 14% and only 2% worse
than the optimal solution for fixed latency.

22

