Improve Memory Access for Achieving Both Performance and Energy Efficiencies on Heterogeneous Systems

HONGYUAN DING, MIAOQING HUANG Department of Computer Science and Computer Engineering University of Arkansas

{hyding,mqhuang}@uark.edu

FPT'14, SHANGHAI

December 10th-12th, 2014

Outline

2

Accelerating the SIFT Algorithm

- Dedicated Hardware Accelerators
- Distributed Multiprocessor System

3 Experiments and Results

Outline

Accelerating the SIFT Algorithm

- Dedicated Hardware Accelerators
- Distributed Multiprocessor System

3 Experiments and Results

4 Conclusions

Introduction

- Limited power budgets for embedded system.
- Increasing demands for high-performance computing.
 - Increase memory bandwidth.
 - Optimize memory hierarchy.
 - Parallel computing with multiple processors.
 - Dedicated hardware accelerators.

Introduction

- Limited power budgets for embedded system.
- Increasing demands for high-performance computing.
 - Increase memory bandwidth.
 - Optimize memory hierarchy.
 - Parallel computing with multiple processors.
 - Dedicated hardware accelerators.
- In this work:
 - We examine how heterogeneous computation units affects both performance and energy efficiency.
 - We examine how memory access methods affect both performance and energy efficiency.

Outline

2

Accelerating the SIFT Algorithm

- Dedicated Hardware Accelerators
- Distributed Multiprocessor System

3 Experiments and Results

Analysis of SIFT Algorithms

- Scale-invariant feature transform (SIFT) as a case study.
 - An algorithm in computer vision to detect and describe local features in images.

Analysis of SIFT Algorithms

- Scale-invariant feature transform (SIFT) as a case study.
 - An algorithm in computer vision to detect and describe local features in images.

Stage	Execution Time	# of Function Calls
Down sample	0.61%	_
Up sample	0.18%	_
Convolution	37.49%	72
DoG	0.44%	_
Find & refine key	0.38%	_
Octave gradient	19.34%	29,944
Key description generation	41.56%	34,873
Total	100%	_
*The state of the	000 0.040	

*The size of the test image: $4,288 \times 2,848$.

Analysis of SIFT Algorithms (Cont.)

- Convolution:
 - Large amount of data processing in one iteration.
 - Consecutive memory addresses for input data.
- Octave Gradient & Key Description Generation:
 - Multiple function calls with relatively small data processing inside each one.
 - Inconsecutive memory access inside each iteration.

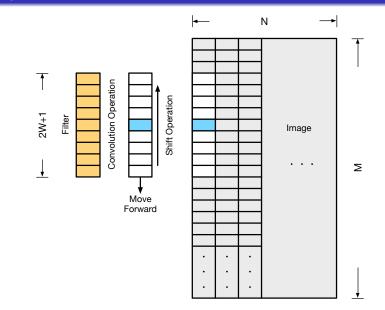
Analysis of SIFT Algorithms (Cont.)

- Convolution:
 - Large amount of data processing in one iteration.
 - Consecutive memory addresses for input data.
- Octave Gradient & Key Description Generation:
 - Multiple function calls with relatively small data processing inside each one.
 - Inconsecutive memory access inside each iteration.
- Proposed Solutions:
 - Dedicated hardware accelerators.
 - Distributed multiprocessor system.

Outline

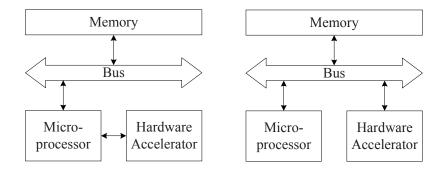
Accelerating the SIFT Algorithm

- Dedicated Hardware Accelerators
- Distributed Multiprocessor System


3 Experiments and Results

Experiments and Results

Conclusions


Principles of 1D Convolution

Experiments and Results

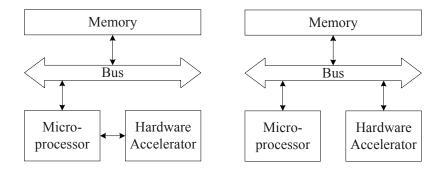
Conclusions

Data Flows

Experiments and Results

Conclusions

Data Flows

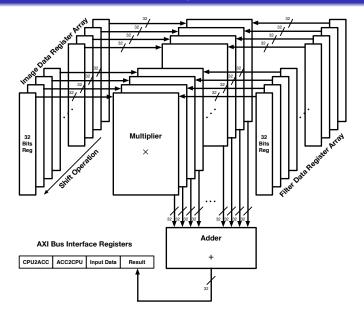


Hardware accelerators access memory indirectly.

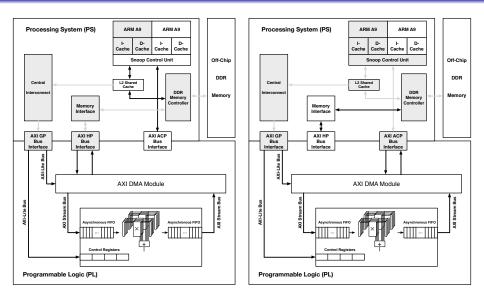
Experiments and Results

Conclusions

Data Flows



- Hardware accelerators access memory indirectly.
- Hardware Accelerators access memory directly.
 - Through AXI high-performance (HP) bus.
 - Through AXI accelerator coherency port (ACP) interface.

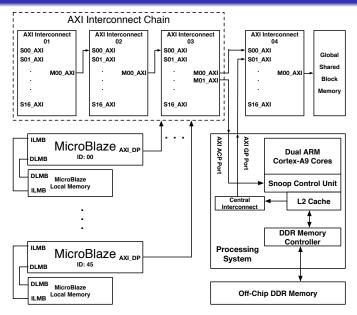

Experiments and Results

Conclusions

Convolution Accelerator: Indirectly Access

System Architectures: Directly Access

Outline


2 Accelerating the SIFT Algorithm

- Dedicated Hardware Accelerators
- Distributed Multiprocessor System

3 Experiments and Results

4 Conclusions

System Architecture

Conclusions

Pseudocodes of Host

```
//Host:
int main () {
  const int numSlaves = TotalMicroBlazes;
  writeGlobalData();
  //WRITE global data to shared block memory
 DCacheFlush();
  for (i = 0; i < numSlaves; i++) {</pre>
    globalStatus[i] = SignalStart;
  DCacheFlush();
  for (i = 0; i < numSlaves; i++) {</pre>
    while (globalStatus[i]) != SignalFinish)
      wait();
  return 0;
```

- Pass global shared data to slaves.
- Trigger slaves.
- Wait for them to stop.

Pseudocodes of Slaves

```
//Slaves:
int main () {
  const int ID = MicroBlazeID;
  const int numSlaves = TotalMicroBlazes;
  while (true) {
    while (globalStatus[ID] != SingalStart)
        wait();
    readGlobalData();
    //READ global data from shared block memory
    for (j = ID; j < numThreads; j += numSlaves) {
        threadExecution(j);
     }
     globalStatus[ID] = SignalFinish;
     } //Continue to next program
    return 0;
}
```

- Wait for host to trigger.
- Retrieve data from global shared memory.
- Traverse every threads.
- Notify host to stop.

Outline

Introduction

Accelerating the SIFT Algorithm

- Dedicated Hardware Accelerators
- Distributed Multiprocessor System

3 Experiments and Results

4 Conclusions

Experiment Setup

- Hardware Configuration.
 - Zynq: ZC706.
 - ARM: 667 MHz.
 - Off-chip memory: 533 MHz.
 - Dedicated hardware accelerator: 50 MHz.
 - Multiple PEs: 200 MHz.

Experiment Setup

- Hardware Configuration.
 - Zynq: ZC706.
 - ARM: 667 MHz.
 - Off-chip memory: 533 MHz.
 - Dedicated hardware accelerator: 50 MHz.
 - Multiple PEs: 200 MHz.
- Acceleration Options.
 - Acc-1: Acc is connected through GP AXI ports.
 - Acc-2.1: Acc is connected through HP AXI ports.
 - Acc-2.2: Acc is connected through ACP AXI ports.
 - Acc-3: Acc is performance as multiple PEs.

Resource Utilization

Resource	D-Cache Disabled	D-Cache Enabled					
Types	w/ Acc-1	w/ Acc-1	w/ Acc-2.1 w/ A	cc-2.2	w/ Acc-3		
Registers	7,466 (1.7%)	7,466 (1.7%)	11,058 (2.59	%)	137,783 (31.3%)		
LUTs	11,648 (5.3%)	11,648 (5.3%)	14,635 (6.79	%)	148,044 (67.7%)		
DSPs	137 (15.2%)	137 (15.2%)	137 (15.2%	5)	413 (45.9%)		
BRAMs	0 (0%)	0 (0%)	5 (0.9%)		432 (79.3%)		

Resource Utilization

Resource	D-Cache Disabled	D-Cache Enabled					
Types	w/ Acc-1	w/ Acc-1	w/ Acc-2.1 w/	/ Acc-2.2	w/ Acc-3		
Registers	7,466 (1.7%)	7,466 (1.7%)	11,058 (2	2.5%)	137,783 (31.3%)		
LUTs	11,648 (5.3%)	11,648 (5.3%)	14,635 (6	6.7%)	148,044 (67.7%)		
DSPs	137 (15.2%)	137 (15.2%)	137 (15.)	.2%)	413 (45.9%)		
BRAMs	0 (0%)	0 (0%)	5 (0.9%	%)	432 (79.3%)		

- Overheads of DMA modules and FIFOs between Acc-1 and Acc-2.
- Up to 46 high-performance MicroBlazes with corresponding AXI interconnections.

Stage	D-Cache	Disabled	D-Cache Enabled					
Slage	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	w/ Acc-3	
1	36.56	35.96	1.66	1.66	1.67	1.66	1.66	
2	10.98	10.78	0.15	0.17	0.15	0.16	0.15	
3	2,248.98	436.22	121.42	217.34	19.52	12.57	12.61	
4	26.34	26.56	3.49	3.51	3.52	3.51	3.52	
5	22.80	22.83	5.43	5.39	5.42	5.44	5.43	
6	1,148.30	1,150.21	70.92	70.87	70.90	70.88	58.42	
7	2,492.48	2,490.65	175.51	175.50	175.47	175.48	142.65	
Total	5,997.30	4,180.26	380.36	476.01	280.78	272.94	227.58	

Stage	D-Cache	Disabled		D-Cache Enabled					
Slaye	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	w/ Acc-3		
3	2,248.98	436.22	121.42	217.34	19.52	12.57	12.61		
6	1,148.30	1,150.21	70.92	70.87	70.90	70.88	58.42		
7	2,492.48	2,490.65	175.51	175.50	175.47	175.48	142.65		
Total	5,997.30	4,180.26	380.36	476.01	280.78	272.94	227.58		

Stage	D-Cache	Disabled		D-Cache Enabled w/o Acc w/ Acc-1 w/ Acc-2.1 w/ Acc-2.2 w/ Acc-3				
Slage	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	w/ Acc-3	
3	2,248.98	436.22	121.42	217.34	19.52	12.57	12.61	
6	1,148.30	1,150.21	70.92	70.87	70.90	70.88	58.42	
7	2,492.48	2,490.65	175.51	175.50	175.47	175.48	142.65	
Total	5,997.30	4,180.26	380.36	476.01	280.78	272.94	227.58	

- Enabling D-Cache brings benefits for both software and hardware implementation.
 - 2 times improvement for Acc-1.

Stage	D-Cache	Disabled		D-Cache Enabled					
Slage	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	w/ Acc-3		
3	2,248.98	436.22	121.42	217.34	19.52	12.57	12.61		
6	1,148.30	1,150.21	70.92	70.87	70.90	70.88	58.42		
7	2,492.48	2,490.65	175.51	175.50	175.47	175.48	142.65		
Total	5,997.30	4,180.26	380.36	476.01	280.78	272.94	227.58		

- Enabling D-Cache brings benefits for both software and hardware implementation.
 - 2 times improvement for Acc-1.
- Accelerator coherence port (ACP) connected to L2 cache controller. 10× speedup.

Stage	D-Cache	Disabled		D-Cache Enabled					
Slage	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	w/ Acc-3		
3	2,248.98	436.22	121.42	217.34	19.52	12.57	12.61		
6	1,148.30	1,150.21	70.92	70.87	70.90	70.88	58.42		
7	2,492.48	2,490.65	175.51	175.50	175.47	175.48	142.65		
Total	5,997.30	4,180.26	380.36	476.01	280.78	272.94	227.58		

- Enabling D-Cache brings benefits for both software and hardware implementation.
 - 2 times improvement for Acc-1.
- Accelerator coherence port (ACP) connected to L2 cache controller. 10× speedup.
- Multiple PEs performs better than ARM core.
 - Advanced micro-architecture of ARM.
 - Low frequency for power concerns.
 - Limited memory bandwidth for multiprocessor system.

Power and Energy Analysis for Convolution

	D-Cache	Disabled	D-Cache Enabled				
	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	
CPU Active (W)		0.50					
Logic Static (W)			().125			
Logic Active (W)	-	0.157	_	0.157	0.164	0.164	
Logic Idle (W)		- 0.139 0.139					
Energy (J)	1,405.61	286.60	75.89	142.79	12.55	8.10	

Power and Energy Analysis for Convolution

	D-Cache	Disabled	D-Cache Enabled				
	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	
CPU Active (W)		0.50					
Logic Static (W)			().125			
Logic Active (W)	-	0.157	-	0.157	0.164	0.164	
Logic Idle (W)		- 0.139 0.139					
Energy (J)	1,405.61	286.60	75.89	142.79	12.55	8.10	

 Direct access to memory through HP AXI port and ACP AXI port can reduce the energy consumption by 5.97× and 9.23×.

Power and Energy Analysis for Convolution

	D-Cache	Disabled	D-Cache Enabled				
	w/o Acc	w/ Acc-1	w/o Acc	w/ Acc-1	w/ Acc-2.1	w/ Acc-2.2	
CPU Active (W)		0.50					
Logic Static (W)			().125			
Logic Active (W)	-	0.157	-	0.157	0.164	0.164	
Logic Idle (W)		- 0.139 0.139					
Energy (J)	1,405.61	286.60	75.89	142.79	12.55	8.10	

- Direct access to memory through HP AXI port and ACP AXI port can reduce the energy consumption by 5.97× and 9.23×.
- D-Cache is more vital for reducing power consumption in software implementation than hardware implementation.

Power and Energy Analysis for SIFT Algorithm

	w/o Acc Disable DC	w/o Acc Enable DC	w/ Acc
CPU Active (W)		0.50	
Logic Static (W)		0.125	
Logic Active (W)	-	—	0.525
Logic Idle (W)	-	-	0.313
Energy (J)	3,748.31	237.73	224.87

 With Acc means combining both Acc-2 and Acc-3 together to performance the whole SIFT algorithm.

Power and Energy Analysis for SIFT Algorithm

	w/o Acc Disable DC	w/o Acc Enable DC	w/ Acc
CPU Active (W)	0.50		
Logic Static (W)		0.125	
Logic Active (W)	-	—	0.525
Logic Idle (W)	_		0.313
Energy (J)	3,748.31	237.73	224.87

- With Acc means combining both Acc-2 and Acc-3 together to performance the whole SIFT algorithm.
- Accelerators is comparable with ARM enabling D-Cache.

Power and Energy Analysis for SIFT Algorithm

	w/o Acc Disable DC	w/o Acc Enable DC	w/ Acc
CPU Active (W)	0.50		
Logic Static (W)		0.125	
Logic Active (W)	-	—	0.525
Logic Idle (W)	_		0.313
Energy (J)	3,748.31	237.73	224.87

- With Acc means combining both Acc-2 and Acc-3 together to performance the whole SIFT algorithm.
- Accelerators is comparable with ARM enabling D-Cache.
 - ASIC vs. FPGA

Outline

Introduction

Accelerating the SIFT Algorithm

- Dedicated Hardware Accelerators
- Distributed Multiprocessor System

3 Experiments and Results

Conclusions

- Accelerating SIFT algorithms:
 - Dedicated hardware acceleration for convolution with various memory access methods.
 - Distributed multiprocessor system to parallelize the last two stages of SIFT algorithms.

Conclusions

- Accelerating SIFT algorithms:
 - Dedicated hardware acceleration for convolution with various memory access methods.
 - Distributed multiprocessor system to parallelize the last two stages of SIFT algorithms.
- Performance and power analysis:
 - Conducting experiments on Zynq devices.
 - Steaming data flows with AXI HP and AXI ACP.
 - D-Cache is more important for software than hardware implementation in terms of performance and power consumption.
 - Multiprocessor system performs better than ARM with cache enabled.

Introduction

Accelerating the SIFT Algorithm

Experiments and Results

Conclusions

Thanks for listenning.

