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Introduction

Limited power budgets for embedded system.

Increasing demands for high-performance computing.
Increase memory bandwidth.
Optimize memory hierarchy.
Parallel computing with multiple processors.
Dedicated hardware accelerators.

In this work:
We examine how heterogeneous computation units affects both
performance and energy efficiency.
We examine how memory access methods affect both
performance and energy efficiency.
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Analysis of SIFT Algorithms

Scale-invariant feature transform (SIFT) as a case study.
An algorithm in computer vision to detect and describe local
features in images.

Stage Execution Time # of Function Calls

Down sample 0.61% −
Up sample 0.18% −

Convolution 37.49% 72
DoG 0.44% −

Find & refine key 0.38% −
Octave gradient 19.34% 29,944

Key description generation 41.56% 34,873

Total 100% −
*The size of the test image: 4,288×2,848.
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Analysis of SIFT Algorithms (Cont.)

Convolution:
Large amount of data processing in one iteration.
Consecutive memory addresses for input data.

Octave Gradient & Key Description Generation:
Multiple function calls with relatively small data processing inside
each one.
Inconsecutive memory access inside each iteration.

Proposed Solutions:
Dedicated hardware accelerators.
Distributed multiprocessor system.
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Principles of 1D Convolution
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Data Flows

Memory

Bus

Micro-
processor

Hardware
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Hardware accelerators access memory indirectly.
Hardware Accelerators access memory directly.

Through AXI high-performance (HP) bus.
Through AXI accelerator coherency port (ACP) interface.
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Convolution Accelerator: Indirectly Access
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System Architectures: Directly Access
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System Architecture
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Pseudocodes of Host

Pass global shared data to slaves.
Trigger slaves.
Wait for them to stop.
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Pseudocodes of Slaves

Wait for host to trigger.
Retrieve data from global shared memory.
Traverse every threads.
Notify host to stop.
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Experiment Setup

Hardware Configuration.
Zynq: ZC706.
ARM: 667 MHz.
Off-chip memory: 533 MHz.
Dedicated hardware accelerator: 50 MHz.
Multiple PEs: 200 MHz.

Acceleration Options.
Acc-1: Acc is connected through GP AXI ports.
Acc-2.1: Acc is connected through HP AXI ports.
Acc-2.2: Acc is connected through ACP AXI ports.
Acc-3: Acc is performance as multiple PEs.
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Resource Utilization

Resource D-Cache Disabled D-Cache Enabled
Types w/ Acc-1 w/ Acc-1 w/ Acc-2.1 w/ Acc-2.2 w/ Acc-3

Registers 7,466 (1.7%) 7,466 (1.7%) 11,058 (2.5%) 137,783 (31.3%)
LUTs 11,648 (5.3%) 11,648 (5.3%) 14,635 (6.7%) 148,044 (67.7%)
DSPs 137 (15.2%) 137 (15.2%) 137 (15.2%) 413 (45.9%)

BRAMs 0 (0%) 0 (0%) 5 (0.9%) 432 (79.3%)

Overheads of DMA modules and FIFOs between Acc-1 and
Acc-2.
Up to 46 high-performance MicroBlazes with corresponding AXI
interconnections.
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Performance of SIFT implementation (unit: s)

Stage
D-Cache Disabled D-Cache Enabled
w/o Acc w/ Acc-1 w/o Acc w/ Acc-1 w/ Acc-2.1 w/ Acc-2.2 w/ Acc-3

1 36.56 35.96 1.66 1.66 1.67 1.66 1.66
2 10.98 10.78 0.15 0.17 0.15 0.16 0.15
3 2,248.98 436.22 121.42 217.34 19.52 12.57 12.61
4 26.34 26.56 3.49 3.51 3.52 3.51 3.52
5 22.80 22.83 5.43 5.39 5.42 5.44 5.43
6 1,148.30 1,150.21 70.92 70.87 70.90 70.88 58.42
7 2,492.48 2,490.65 175.51 175.50 175.47 175.48 142.65

Total 5,997.30 4,180.26 380.36 476.01 280.78 272.94 227.58
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Performances of SIFT implementation (unit: s)

Stage
D-Cache Disabled D-Cache Enabled
w/o Acc w/ Acc-1 w/o Acc w/ Acc-1 w/ Acc-2.1 w/ Acc-2.2 w/ Acc-3

3 2,248.98 436.22 121.42 217.34 19.52 12.57 12.61
6 1,148.30 1,150.21 70.92 70.87 70.90 70.88 58.42
7 2,492.48 2,490.65 175.51 175.50 175.47 175.48 142.65

Total 5,997.30 4,180.26 380.36 476.01 280.78 272.94 227.58

Enabling D-Cache brings benefits for both software and
hardware implementation.

2 times improvement for Acc-1.
Accelerator coherence port (ACP) connected to L2 cache
controller. 10× speedup.
Multiple PEs performs better than ARM core.

Advanced micro-architecture of ARM.
Low frequency for power concerns.
Limited memory bandwidth for multiprocessor system.
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Power and Energy Analysis for Convolution

D-Cache Disabled D-Cache Enabled
w/o Acc w/ Acc-1 w/o Acc w/ Acc-1 w/ Acc-2.1 w/ Acc-2.2

CPU Active (W) 0.50
Logic Static (W) 0.125
Logic Active (W) − 0.157 − 0.157 0.164 0.164
Logic Idle (W) − 0.139 0.139

Energy (J) 1,405.61 286.60 75.89 142.79 12.55 8.10

Direct access to memory through HP AXI port and ACP AXI port
can reduce the energy consumption by 5.97× and 9.23×.
D-Cache is more vital for reducing power consumption in
software implementation than hardware implementation.
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Power and Energy Analysis for SIFT Algorithm

w/o Acc Disable DC w/o Acc Enable DC w/ Acc

CPU Active (W) 0.50
Logic Static (W) 0.125
Logic Active (W) − − 0.525
Logic Idle (W) − 0.313

Energy (J) 3,748.31 237.73 224.87

With Acc means combining both Acc-2 and Acc-3 together to
performance the whole SIFT algorithm.

Accelerators is comparable with ARM enabling D-Cache.
ASIC vs. FPGA
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Conclusions

Accelerating SIFT algorithms:
Dedicated hardware acceleration for convolution with various
memory access methods.
Distributed multiprocessor system to parallelize the last two
stages of SIFT algorithms.

Performance and power analysis:
Conducting experiments on Zynq devices.
Steaming data flows with AXI HP and AXI ACP.
D-Cache is more important for software than hardware
implementation in terms of performance and power consumption.
Multiprocessor system performs better than ARM with cache
enabled.
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Questions?

Thanks for listenning.
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