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@ Limited power budgets for embedded system.

@ Increasing demands for high-performance computing.
Increase memory bandwidth.

Optimize memory hierarchy.

Parallel computing with multiple processors.
Dedicated hardware accelerators.

@ In this work:
o We examine how heterogeneous computation units affects both
performance and energy efficiency.
o We examine how memory access methods affect both
performance and energy efficiency.
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Analysis of SIFT Algorithms

@ Scale-invariant feature transform (SIFT) as a case study.

@ An algorithm in computer vision to detect and describe local
features in images.

Stage H Execution Time \ # of Function Calls

Down sample 0.61% —
Up sample 0.18% —
Convolution 37.49% 72
DoG 0.44% -
Find & refine key 0.38% —

Octave gradient 19.34% 29,944

Key description generation 41.56% 34,873
Total H 100% _

*The size of the test image: 4,288x2,848.
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@ Convolution:

e Large amount of data processing in one iteration.
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@ Octave Gradient & Key Description Generation:
o Multiple function calls with relatively small data processing inside
each one.
@ Inconsecutive memory access inside each iteration.
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Analysis of SIFT Algorithms (Cont.)

@ Convolution:

e Large amount of data processing in one iteration.
o Consecutive memory addresses for input data.

@ Octave Gradient & Key Description Generation:

o Multiple function calls with relatively small data processing inside
each one.
@ Inconsecutive memory access inside each iteration.

@ Proposed Solutions:

@ Dedicated hardware accelerators.
o Distributed multiprocessor system.
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@ Hardware accelerators access memory indirectly.
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@ Hardware accelerators access memory indirectly.
@ Hardware Accelerators access memory direcitly.

e Through AXI high-performance (HP) bus.
@ Through AXI accelerator coherency port (ACP) interface.
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Convolution Accelerator: Indirectly Access
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System Architectures: Directly Access
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System Architecture
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Pseudocodes of Host

//Host :
int main () {
const int numSlaves = TotalMicroBlazes;

writeGlobalData() ;

//WRITE global data to shared block memory

DCacheFlush() ;

for (i = 0; i < numSlaves; i++) {
globalStatus[i] = SignalStart;

}

DCacheFlush() ;

for (i = 0; i < numSlaves; i++) {
while (globalStatus[i]) != SignalFinish)

wait ();
}
return 0;

}

@ Pass global shared data to slaves.
@ Trigger slaves.
@ Wait for them to stop.
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Pseudocodes of Slaves

//Slaves:
int main () {
const int ID = MicroBlazelD;
const int numSlaves = TotalMicroBlazes;
while (true) {
while (globalStatus[ID] != SingalStart)
wait ();
readGlobalData() ;
//READ global data from shared block memory
for (j = ID; j < numThreads; J += numSlaves) {
threadExecution(j);

}

globalStatus[ID] = SignalFinish;
} //Continue to next program
return 0;

}

@ Wait for host to trigger.

@ Retrieve data from global shared memory.
@ Traverse every threads.

@ Notify host to stop.
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@ Hardware Configuration.

Zynq: ZC706.

ARM: 667 MHz.

Off-chip memory: 533 MHz.

Dedicated hardware accelerator: 50 MHz.
Multiple PEs: 200 MHz.
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Experiment Setup

@ Hardware Configuration.

Zynq: ZC706.

ARM: 667 MHz.

Off-chip memory: 533 MHz.

Dedicated hardware accelerator: 50 MHz.
Multiple PEs: 200 MHz.
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@ Acceleration Options.

Acc-1: Acc is connected through GP AXI ports.
Acc-2.1: Acc is connected through HP AXI ports.
Acc-2.2: Acc is connected through ACP AXI ports.
Acc-3: Acc is performance as multiple PEs.
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Resource Utilization

Experiments and Results

Resource||D-Cache Disabled D-Cache Enabled
Types w/ Acc-1 w/ Acc-1 |w/ Acc-2.1|w/ Acc2.2]  w/ Acc-3
Registers|| 7,466 (1.7%) | 7,466 (1.7%) 11,058 (2.5%) 137,783 (31.3%)
LUTs 11,648 (5.3%) [11,648 (5.3%) 14,635 (6.7%) 148,044 (67.7%)
DSPs 137 (15.2%) 137 (15.2%) 137 (15.2%) 413 (45.9%)
BRAMs 0 (0%) 0 (0%) 5(0.9%) 432 (79.3%)
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Resource Utilization

Resource||D-Cache Disabled D-Cache Enabled
Types w/ Acc-1 w/ Acc-1 |w/ Acc-2.1|w/ Acc2.2]  w/ Acc-3
Registers|| 7,466 (1.7%) | 7,466 (1.7%) 11,058 (2.5%) 137,783 (31.3%)
LUTs 11,648 (5.3%) [11,648 (5.3%) 14,635 (6.7%) 148,044 (67.7%)
DSPs 137 (15.2%) 137 (15.2%) 137 (15.2%) 413 (45.9%)
BRAMs 0 (0%) 0 (0%) 5(0.9%) 432 (79.3%)

@ Overheads of DMA modules and FIFOs between Acc-1 and
Acc-2.

@ Up to 46 high-performance MicroBlazes with corresponding AXI
interconnections.
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Performance of SIFT implementation (unit: s)

D-Cache Disabled

D-Cache Enabled

Stage w/o Acc \w/ Acc-1|w/o Acc\w/ Acc-1 \w/ Acc-2.1 \w/ Acc-2.2|w/ Acc-3
1 [[ 3656 | 35.96 | 166 | 1.66 1.67 1.66 1.66
2 |[ 1098 | 10.78 | 0.15 | 0.17 0.15 0.16 0.15
3 [[2,248.98] 436.22 [121.42] 217.34 | 19.52 1257 | 12.61
4 || 26.34 | 2656 | 3.49 | 3.51 3.52 3.51 3.52
5 || 22.80 | 22.83 | 543 | 5.39 5.42 5.44 5.43
6 ||1,148.301,150.21| 70.92 | 70.87 | 70.90 | 70.88 | 58.42
7 [[2,492.48/2,490.65|175.51| 175.50 | 175.47 | 175.48 | 142.65

Total [|5,997.30[4,180.26| 380.36 | 476.01 | 280.78 | 272.94 | 227.58
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Performances of SIFT implementation (unit: s)
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@ Enabling D-Cache brings benefits for both software and
hardware implementation.
@ 2 times improvement for Acc-1.
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Performances of SIFT implementation (unit: s)

D-Cache Disabled D-Cache Enabled

w/o Acc \W/ Acc-1|w/o Acc\w/ Acc-1 \W/ Acc-2.1 \w/ Acc-2.2|\w/ Acc-3
3 ||2,248.98| 436.22 |121.42 | 217.34 | 19.52 12.57 12.61
6 |/1,148.30/1,150.21| 70.92 | 70.87 70.90 70.88 58.42
7 (12,492.48(2,490.65| 175.51 | 175.50 | 175.47 175.48 | 142.65

Total ||5,997.30|4,180.26] 380.36 | 476.01 | 280.78 | 272.94 | 227.58

@ Enabling D-Cache brings benefits for both software and
hardware implementation.
@ 2 times improvement for Acc-1.
@ Accelerator coherence port (ACP) connected to L2 cache
controller. 10x speedup.
@ Multiple PEs performs better than ARM core.
@ Advanced micro-architecture of ARM.
o Low frequency for power concerns.

o Limited memory bandwidth for multiprocessor system.
31/41



Experiments and Results

Power and Energy Analysis for Convolution

D-Cache Disabled D-Cache Enabled
w/o Acc |w/ Acc-1|w/o Acc|w/ Acc-1|w/ Acc-2.1[w/ Acc-2.2
CPU Active (W) 0.50
Logic Static (W) 0.125
Logic Active W)|| -~ [ 0157 | — [ 0.157 | 0.164 | 0.164
Logic Idle (W) — 0.139 0.139

Energy (J) [[1,405.61] 286.60 | 75.89 | 14279 | 1255 8.10
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@ Direct access to memory through HP AXI port and ACP AXI port
can reduce the energy consumption by 5.97x and 9.23 x.
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Power and Energy Analysis for Convolution

D-Cache Disabled D-Cache Enabled
w/o Acc |w/ Acc-1|w/o Acc|w/ Acc-1|w/ Acc-2.1[w/ Acc-2.2
CPU Active (W) 0.50
Logic Static (W) 0.125
Logic Active W)|| -~ [ 0157 | — [ 0.157 | 0.164 | 0.164
Logic Idle (W) - 0.139 | 0.139
Energy (J) [[1,405.61| 286.60 | 75.89 | 14279 | 1255 [ 8.10

@ Direct access to memory through HP AXI port and ACP AXI port
can reduce the energy consumption by 5.97x and 9.23 x.

@ D-Cache is more vital for reducing power consumption in
software implementation than hardware implementation.
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Power and Energy Analysis for SIFT Algorithm

|| wio Acc Disable DC | w/o Acc Enable DC | w/ Acc

CPU Active (W) 0.50

Logic Static (W) 0.125
Logic Active (W) - \ — 0.525
Logic Idle (W) — 0.313
Energy (J) || 3,748.31 \ 237.73 | 224.87

@ With Acc means combining both Acc-2 and Acc-3 together to
performance the whole SIFT algorithm.
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Power and Energy Analysis for SIFT Algorithm

|| wio Acc Disable DC | w/o Acc Enable DC | w/ Acc

CPU Active (W) 0.50

Logic Static (W) 0.125
Logic Active (W) - \ — 0.525
Logic Idle (W) — 0.313
Energy (J) || 3,748.31 \ 237.73 | 224.87

@ With Acc means combining both Acc-2 and Acc-3 together to
performance the whole SIFT algorithm.
@ Accelerators is comparable with ARM enabling D-Cache.
@ ASIC vs. FPGA
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@ Accelerating SIFT algorithms:
e Dedicated hardware acceleration for convolution with various

memory access methods.
o Distributed multiprocessor system to parallelize the last two

stages of SIFT algorithms.
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Conclusions

Conclusions

@ Accelerating SIFT algorithms:
e Dedicated hardware acceleration for convolution with various
memory access methods.

o Distributed multiprocessor system to parallelize the last two
stages of SIFT algorithms.

@ Performance and power analysis:
e Conducting experiments on Zynq devices.
e Steaming data flows with AXI HP and AXI ACP.
o D-Cache is more important for software than hardware
implementation in terms of performance and power consumption.
o Multiprocessor system performs better than ARM with cache
enabled.
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Conclusions

Questions?

Thanks for listenning.
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