
Approaching Overhead-Free Execution
on FPGA Soft-Processors

Charles Eric LaForest
Jason Anderson

J. Gregory Steffan

University of Toronto
ICFPT 2014, Shanghai

2

Motivation
● Designing on FPGAs remains difficult

– Larger systems

– Longer CAD processing times

– Increases time-to-market and engineering costs

Clip art by Angela Melick, http://www.wastedtalent.ca/

3

Better Design Processes
● FPGA Overlays (soft-processors)

– Easy and fast: design system as software

– Co-design hardware only if necessary

– Fast overall design cycle

– Lower performance

4

Raw Performance Loss
● Soft-processor vs. underlying FPGA (Stratix IV)

– Logic Fabric: 800 MHz

– Block RAM: 550 MHz

– DSP Block: 480 MHz

– Nios II/f: 240 MHz

5

CPU Internal Overhead
● CPU vs. custom hardware

– Sequential excution vs. Spatial parallelism

– Address/Loop calculations vs. Counters

– Branching vs. Multiplexers
● FSMs

6

Reducing CPU Overhead
● CPU pipelining and multi-threading

– Raw speed increase, but no effect on overhead

● Loop unrolling
– Code bloat

– Regular code/data

● Code vectorizing
– Challenging

– Regular code/data

7

A Partial Solution: Octavo

● Exceeds 500 MHz on Stratix IV (550 MHz max!)
● 8 threads (fixed round-robin dispatch)
● Easily extensible with hardware accelerators

“Octavo: An FPGA-Centric Processor Family”, FPGA 2012

8

Enabling Overhead-Free Execution

● Problems
– Speedup ultimately limited by execution overhead

– Addressing and flow-control overhead (per thread)

– Worsened by hardware accelerators

9

Enabling Overhead-Free Execution

● Problems
– Speedup ultimately limited by execution overhead

– Addressing and flow-control overhead (per thread)

– Worsened by hardware accelerators

● Solutions
– Extract overhead as “sub-programs” (per thread)

– Execute them in parallel along the pipeline

– Decreases Fmax 6.1%, increases area 73%*

10

Sequential Sub-Programs in MIPS
outer: seed_ptr = ptr_init
inner: temp = MEM[seed_ptr]
 if (temp < 0):
 goto outer
 temp2 = temp & 1
 if (temp2 == 1):
 temp = (temp * 3) + 1
 else:
 temp = temp / 2
 MEM[seed_ptr] = temp
 seed_ptr += 1
 OUTPUT = temp
 goto inner

● Flow-control
● Addressing
● Useful work

11

Sequential Sub-Programs in Octavo
outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 BLTZn outer, temp
 BEVNn even, temp
 MUL temp, temp, 3
 ADD temp, temp, 1
 JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 ADD seed_ptr, seed_ptr, 1
 SW temp, OUTPUT
 JMP inner

● Flow-control
● Addressing
● Useful work

12

Removing Flow-Control Overhead
outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 BLTZn outer, temp
 BEVNn even, temp
 MUL temp, temp, 3
 ADD temp, temp, 1
 JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 ADD seed_ptr, seed_ptr, 1
 SW temp, OUTPUT
 JMP inner

● Flow-control
● Addressing
● Useful work

13

Parallel Sub-Programs in Octavo
outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 BLTZn outer, temp
 BEVNn even, temp
 MUL temp, temp, 3
 ADD temp, temp, 1
 JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 ADD seed_ptr, seed_ptr, 1
 SW temp, OUTPUT
 JMP inner

● Flow-control
● Addressing
● Useful work

14

Parallel Sub-Programs in Octavo

outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 MUL temp, temp, 3 ; BEVNn even ; BLTZn outer
 ADD temp, temp, 1 ; JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 SW temp, OUTPUT ; JMP inner

● Flow-control (folded, cancelling, multi-way)
● Addressing (indirect with post-increment)
● Useful work

15

Parallel Sub-Programs in Octavo

outer: ADD seed_ptr, ptr_init, 0
inner: LW temp, seed_ptr
 MUL temp, temp, 3 ; BEVNn even ; BLTZn outer
 ADD temp, temp, 1 ; JMP output
even: SRA temp, temp, 1
output: SW temp, seed_ptr
 SW temp, OUTPUT ; JMP inner

● Flow-control (folded, cancelling, multi-way)
● Addressing (indirect with post-increment)
● Useful work

16

Original Octavo Soft-Processor

17

Reduced-Overhead Octavo

18

Reduced-Overhead Octavo

(Branches not in fetched instructions!)

Branch Trigger Module (BTM)

19

Reduced-Overhead Octavo

Address Offset Module (AOM)

(One entry for each instruction operand)

20

AOM and BTM Entries
● Each AOM entry: one pointer
● Each BTM entry: one branch

21

AOM and BTM Entries
● Each AOM entry: one pointer
● Each BTM entry: one branch

● Currently: up to 4 pointers and 8 branches
– Per thread! (32 pointers and 64 branches total)

– While still reaching 500 MHz peak on Stratix IV

22

AOM and BTM Entries
● Each AOM entry: one pointer
● Each BTM entry: one branch

● Currently: up to 4 pointers and 8 branches
– Per thread! (32 pointers and 64 branches total)

– While still reaching 500 MHz peak on Stratix IV

● Benchmarking: 2 pointers and 4 branches
– Reaches 495 MHz avg., 510 MHz peak

– Shows behaviour with partial AOM/BTM support

23
Hailstone Increment Reverse FIR FSM

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Unrolled ("perfect" MIPS) Looping (modified Octavo)

Benchmark Speedup

24
Hailstone Increment Reverse FIR FSM

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Unrolled ("perfect" MIPS) Looping (modified Octavo)

Benchmark Speedup

25

Benchmark Efficiency Increase

Hailstone Increment Reverse FIR FSM
1

1.1

1.2

1.3

1.4

1.5

1.6
Unrolled ("perfect" MIPS) Looping (modified Octavo)

26

Benchmark Efficiency Increase

Hailstone Increment Reverse FIR FSM
1

1.1

1.2

1.3

1.4

1.5

1.6
Unrolled ("perfect" MIPS) Looping (modified Octavo)

(0.828)

27

● BTM: additional branch conditions

– Programmable loop counters

Future Improvements

28

● BTM: additional branch conditions

– Programmable loop counters

● AOM: extend pointer increments

– Negative steps
– Strided and modulo addressing

Future Improvements

29

● BTM: additional branch conditions

– Programmable loop counters

● AOM: extend pointer increments

– Negative steps
– Strided and modulo addressing

● Both: improve area usage

– More efficient use of internal memories

Future Improvements

30

Ongoing Work

https://github.com/laforest/Octavo

Clip art by Angela Melick, http://www.wastedtalent.ca/

31

Extra Slides

32

33

34

Octavo Soft-Processor

● Reaches 550 MHz on Stratix IV FPGA
● 8 threads (fixed round-robin)
● 1024 36-bit integer words for each I/A/B memory

T7 T6 T5 T4 T3 T2 T1 T0 T7 T6
(Previous Round)

35

Instruction Memory

36

Empty Pipeline Stages

● Necessary for high frequency operation
● Used for special functions later...

37

A and B Data Memories

● Memory-mapped I/O ports
● Can attach custom hardware to ports

38

Controller

● Computes next PC for each thread (8 Pcs)
● Calculates jumps and branches

39

ALU

● Calculates ADD, XOR, MUL, etc...
● Output written to all memories

40

Data Path

● 8 stages (2 read, 4 compute, 2 write)

41

Control Path

● 8 stages to match Data Path
● Offset due to empty stages (1,2,3)
● 1-cycle RAW hazard from ALU to Instr. Mem.

42

Branch Trigger Module

43

Address Offset Module

44

AOM/BTM Configurations

