
Efficient FPGA Implementation of
Digit Parallel Online Arithmetic Operators

Kan Shi1, David Boland2 and George A. Constantinides1

1: EEE Department, Imperial College London, UK

2: ECSE Department, Monash University, Australia

Dec 11, 2014

FPT’14 Shanghai, China

It is all about Performance

• In conventional arithmetic, operations have different
computing directions.

• Potentially causes large latency.

+

x

/

Overall computational latency

MULT

DIV

Can’t start until full precision

result is generated in

previous computation.

ADD

1

It is all about Performance

• “Online Arithmetic”: both inputs and outputs are
processed MSB-first.

• Enables parallelism among multiple operations.

+

x

/

Overall computational latency: Largely reduced

MULT

DIV

Can start when 1st result

digit is generated ADD

2

Online Arithmetic is “Overclocking Friendly”

• It’s beneficial to operate beyond the worst case

• Errors due to timing violations only occur rarely.

• Online Arithmetic fails gracefully under overclocking

• Overclocking errors only occur at LSBs.

Traditional

Arithmetic

SNR=9dB

Online

Arithmetic

SNR=36.2dB

Example: Image Filter (DAC’14), 25% Speed-up

3

However…

• Online arithmetic operators cost large area

• As it employs a redundant number system

• Example: Online adder is 3x ~ 11x larger than RCA

0

20

40

60

80

100

120

140

4 8 16 32 64

o

f
Sl

ic
e

s

Word-length

RCA OA

4

Our Vision

Performance

Area

“This work”

“Original”

This work: Online arithmetic

with FPGA optimization

Original: Online arithmetic

with behavioural description

Conventional

arithmetic

5

Our Contributions

• Efficient methods to map online adders and multipliers
to modern FPGAs;

• A method to implement correctly-rounded online
multipliers for a chosen output precision;

• Demonstration of performance improvements in terms
of area and frequency.

6

Outline

• Motivation

• Background: Online arithmetic

− Key features

• Digit-parallel online adder on FPGAs

• Digit-parallel online multiplier on FPGAs

• Conclusion

7

Online Arithmetic: Background

• What is it?
− Online Arithmetic performs computation in an MSD-first manner.

− It is initially designed for digit-serial operation.

Online Delay

Time

8

Online Arithmetic: Background

• What is it?
− Online Arithmetic performs computation in an MSD-first manner.

− It is initially designed for digit-serial operation.

• How is this possible?
− Requires a flexibility in computing outputs only based on partial

information of inputs.

− Redundancy in the number representation.

Binary Standard Binary Redundant

Digit Set {0,1} {-1,0,1}

Example 0.011 0.1(-1)1, 0.10(-1), 0.011, …

8

• Features:

• Binary, digit parallel

• Fast: critical path is irrelevant to operand precision

Online Arithmetic: Adder

Critical path: 2 FA delay

9

• Previous work described an implementation method

• Targeting FPGAs with 4-input LUTs and 2 LUTs per Slice

Online Adder on FPGAs

Slice Structure of Spartan FPGA Online Adder (Partial)

Normal ASIC

Implementation

10

• Previous work described an implementation method

• Targeting FPGAs with 4-input LUTs and 2 LUTs per Slice

• Take advantage of fast carry logic in FPGAs

Online Adder on FPGAs

Slice Structure of Spartan FPGA Online Adder (Partial)

10

• However, can’t be directly applied to modern FPGAs

• With 6-input LUTs and 4 LUTs per Slice

Online Adder on FPGAs

Online Adder (Partial)

11

• However, can’t be directly applied to modern FPGAs

• With 6-input LUTs and 4 LUTs per Slice

Online Adder on FPGAs

Online Adder (Partial)

Can’t initialize

carry in here

Can initialize

carry in here

11

• We propose an equivalent transformation of OA

• One FA is divided to generate Sum and Carry separately

• Example: 4-digit online adder

Online Adder on FPGAs: Proposed

Fits in one Slice

12

• We propose an equivalent transformation of OA

• FPGA Implementation

Online Adder on FPGAs: Proposed

13

• Rated frequency comparison

• OA with direct implementation (OA_behv)

• Proposed OA (OA_new)

Online Adder on FPGAs: Performance

300

350

400

450

500

550

600

650

700

750

0 20 40 60

Fr
e

q
u

e
n

cy
 (

M
H

z)

Word-length

OA_behv OA_new

20%

14

• Rated frequency comparison

• OA with direct implementation (OA_behv)

• Proposed OA (OA_new)

• RCA

Online Adder on FPGAs: Performance

300

350

400

450

500

550

600

650

700

750

0 20 40 60

Fr
e

q
u

e
n

cy
 (

M
H

z)

Word-length

RCA OA_new

170%

15

• Area comparison (Slice)

Online Adder on FPGAs: Performance

Area savings over direct implementation

0

20

40

60

80

100

120

140

4 8 16 32 64

o

f
Sl

ic
e

s

Word-length

OA_behv

OA_new

WL 4 8 16 32 64

Slices 66.7% 77.3% 73.5% 76.7% 76.9%

16

• Area comparison: OA vs RCA

Online Adder on FPGAs: Performance

Area overhead over RCA: less than 2x

0

5

10

15

20

25

30

35

40

4 8 16 32 64

o

f
Sl

ic
e

s

Word-length

RCA

OA_new

WL 4 8 16 32 64

Slices 1.50x 1.67x 1.80x 1.89x 1.94x

16

Outline

• Motivation

• Background: Online arithmetic

• Digit-parallel online adder on FPGAs

• Digit-parallel online multiplier on FPGAs

• Optimization of original algorithm for full precision results

• Structure optimization for half precision results

• Performance analysis: area and frequency

• Conclusion

17

• Recurrence algorithm:

• More details in the paper

• Take 1 digit input per iteration

• Modify to take 1 partial product per iteration

Online Multiplier: Digit Parallel Algorithm

Generates 1 digit per iteration

18

• Recurrence algorithm:

• Proposed algorithm

Online Multiplier: Digit Parallel Algorithm

Partial product

19

Online Multiplier: Structure

• Example: 4-digit online multiplier

 Single LUT

implementation

20

Recovering the area

21

Datapath

8 bits

8 bits

16 bits

16 bits 17 bits 34 bits 35 bits 70 bits 71 bits

x + x + x +

8 bits

8 bits

16 bits?

Recovering the area

21

Datapath

8 bits

8 bits

16 bits

8 bits 8 bits 8 bits 8 bits 8 bits 16 bits

x + x + x +

8 bits

8 bits

Quantize

Recovering the area

21

Datapath

8 bits

8 bits

16 bits

8 bits 8 bits 8 bits 8 bits 8 bits 16 bits

x + x + x +

8 bits

8 bits

quantise

Why compute all those intermediate values,
before immediately throwing them all away?

Online Multiplier: Half Precision Results

• Example: 4-digit online multiplier

Full precision results Half precision results

22

Area Comparison: Slice

Area savings over direct implementation (OM_behv)

WL 4 8 16 32

OM_Full 72.0% 81.7% 79.5% 68.6%

OM_Half 88.1% 90.4% 89.0% 85.7%

0

100

200

300

400

500

600

700

800

4 8 16 32

OM_Full

OM_Half

OM_Behv

of slices

Precision

23

Area Comparison: Slice

Area savings/overhead over CoreGen multiplier

WL 4 8 16 32

OM_Full 0% 33.3% 65.9% 84.4%

OM_Half 57.1% 30.4% 10.7% 16.2%

0

100

200

300

400

500

600

4 8 16 32

CoreGen

OM_Full

OM_Half

of slices

Precision

23

0 5 10 15 20 25 30
0

50

100

150

200

250

300

Word−length

F
re

q
u
e

n
c
y
 (

M
H

z
)

CoreGen

OM_full

OA_half

OM_behv

• Frequency comparison

Rated Frequencies

CoreGen

OM

OM_behv

Online Multiplier: Performance

Overclocked 8-digit design: error vs freq

CoreGen

OM_half

OM_full

24

Conclusion

• Efficient mapping of digit parallel online arithmetic
operators to FPGAs

• Our mapping method targets modern FPGAs:

− 6-input LUTs and 4 LUTs per Slice

• Empirical results demonstrate benefits over direct
implementation:

− Area reduction

− Frequency speed-ups

25

