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It is all about Performance 

• In conventional arithmetic, operations have different 
computing directions. 

• Potentially causes large latency.  
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It is all about Performance 

• “Online Arithmetic”: both inputs and outputs are 
processed MSB-first. 

• Enables parallelism among multiple operations. 
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Online Arithmetic is “Overclocking Friendly” 

• It’s beneficial to operate beyond the worst case 

• Errors due to timing violations only occur rarely. 

• Online Arithmetic fails gracefully under overclocking 

• Overclocking errors only occur at LSBs. 
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However… 

• Online arithmetic operators cost large area 

• As it employs a redundant number system  

• Example: Online adder is 3x ~ 11x larger than RCA 
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Our Contributions 

• Efficient methods to map online adders and multipliers 
to modern FPGAs; 

 

• A method to implement correctly-rounded online 
multipliers for a chosen output precision; 

 

• Demonstration of performance improvements in terms 
of area and frequency. 
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Outline 

• Motivation 

• Background: Online arithmetic 

− Key features 

• Digit-parallel online adder on FPGAs 

• Digit-parallel online multiplier on FPGAs 

• Conclusion 
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Online Arithmetic: Background 

• What is it? 
− Online Arithmetic performs computation in an MSD-first manner. 

− It is initially designed for digit-serial operation. 
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Online Arithmetic: Background 

• What is it? 
− Online Arithmetic performs computation in an MSD-first manner. 

− It is initially designed for digit-serial operation. 

• How is this possible? 
− Requires a flexibility in computing outputs only based on partial 

information of inputs. 

− Redundancy in the number representation. 
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• Features: 

• Binary, digit parallel 

• Fast: critical path is irrelevant to operand precision 

 

 

 

 

  

 

 

Online Arithmetic: Adder 

Critical path: 2 FA delay 

9 



• Previous work described an implementation method 

• Targeting FPGAs with 4-input LUTs and 2 LUTs per Slice 
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• Previous work described an implementation method 

• Targeting FPGAs with 4-input LUTs and 2 LUTs per Slice 

• Take advantage of fast carry logic in FPGAs 

 

 

 

  

 

 

Online Adder on FPGAs 

Slice Structure of Spartan FPGA Online Adder (Partial) 
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• However, can’t be directly applied to modern FPGAs 

• With 6-input LUTs and 4 LUTs per Slice 

 

 

 

  

 

 

Online Adder on FPGAs 

Online Adder (Partial) 
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• However, can’t be directly applied to modern FPGAs 

• With 6-input LUTs and 4 LUTs per Slice 

 

 

 

  

 

 

Online Adder on FPGAs 

Online Adder (Partial) 
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• We propose an equivalent transformation of OA 

• One FA is divided to generate Sum and Carry separately 

• Example: 4-digit online adder 

 

 

  

 

 

Online Adder on FPGAs: Proposed 

Fits in one Slice 
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• We propose an equivalent transformation of OA 

• FPGA Implementation 

 

 

  

 

 

Online Adder on FPGAs: Proposed 
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• Rated frequency comparison 

• OA with direct implementation (OA_behv) 

• Proposed OA (OA_new) 

 

 

  

 

 

Online Adder on FPGAs: Performance 
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• Rated frequency comparison 

• OA with direct implementation (OA_behv) 

• Proposed OA (OA_new) 

• RCA 

 

 

  

 

 

Online Adder on FPGAs: Performance 
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• Area comparison (Slice) 

 

  

 

 

Online Adder on FPGAs: Performance 

Area savings over direct implementation 
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• Area comparison: OA vs RCA 

 

  

 

 

Online Adder on FPGAs: Performance 

Area overhead over RCA: less than 2x 
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Outline 

• Motivation 

• Background: Online arithmetic 

• Digit-parallel online adder on FPGAs 

• Digit-parallel online multiplier on FPGAs 

• Optimization of original algorithm for full precision results 

• Structure optimization for half precision results 

• Performance analysis: area and frequency 

• Conclusion 

17 



• Recurrence algorithm: 

 

 

 

 
 

• More details in the paper 

• Take 1 digit input per iteration 

• Modify to take 1 partial product per iteration 

  

 

 

Online Multiplier: Digit Parallel Algorithm 

Generates 1 digit per iteration 
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• Recurrence algorithm: 

 

 

 

 
 

 

• Proposed algorithm 

  

 

 

Online Multiplier: Digit Parallel Algorithm 
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Online Multiplier: Structure 

• Example: 4-digit online multiplier 
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Recovering the area 
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Datapath 
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Datapath 

 

8 bits 
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Why compute all those intermediate values,  
before immediately throwing them all away? 



Online Multiplier: Half Precision Results 

• Example: 4-digit online multiplier 
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Area Comparison: Slice 

Area savings over direct implementation (OM_behv) 
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Area Comparison: Slice 

Area savings/overhead over CoreGen multiplier 
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Conclusion 

• Efficient mapping of digit parallel online arithmetic 
operators to FPGAs 

• Our mapping method targets modern FPGAs: 

− 6-input LUTs and 4 LUTs per Slice 

• Empirical results demonstrate benefits over direct 
implementation: 

− Area reduction  

− Frequency speed-ups 
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