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Background

* Mobile system:
UAV, walking robots ...
* Requires low power cost
* Requires high performance
Computer vision, Al ...
Real-time processing

* Many algorithms involves
matrix computation:
SLAM
Image Processing
3D Registration




Target

e A matrix processor with:
a) Low power cost for mobile system
b) High flexibility for different applications

c) High performance to support complicated
tasks



Related work

* cuBLAS and MKL
CPU-GPU platform costs much power

* ASIC chips
low flexibility




Related work

* FPGA platform

* Vector Processor [C. H. Chou, FPGA’11]
Data access problem
Workload for master processor
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* Accelerator
Dedicated accelerator for one operation, e.g. matrix
multiplication.[T. -C. Lee, WCECS’13]

* A straight forward implementation:
Accelerators communicate through External Memory

Accelerator O Accelerator 1 Accelerator N

Cache O Cache 1l Cache N
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itrator

> bottleneck

External Memory




Contributions

* Integration of different accelerators

* A software programming interface with matrix level
Instructions

* Minimize the workload of master processor
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System Description
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System Description

Ping-pong strategy

e

Asynchronous
Instruction Execution

different accelerators

Shared Matrix Cache
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12



Shared Matrix Cache

Accelerator O Accelerator1 | eee

Accelerator N

Shared’Cache

ExternallMemory

* Use a shared cache for the communication

* Reduce the I/O with external memory
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Shared Matrix Cache

* Targets:
a) High bandwidth
b) Supports 2D parallel data access
c) Supports different patterns of data access
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* The cache is treated as a big 2D matrix
* Divided by 8*8 small windows:

Window ID <> address in BRAM

Relative position <= |ID of BRAM
* Four patterns of data access:
a) Pixel 1*1
b) Column 8*1

c) Row  1*8 e e iR
d) Window 8*8 .= . - -7 A
W(0,0)| W(0,1) ;w'(o,,2)
W(1,0)¥
A | address
BRAMIO"'SB
_________________________________________________________ v
2D Matrix Cache




Matrix Accelerators

e Currently we have four kinds of accelerators:
a) Matrix initializer
8 entries per cycle

b) Pixel-wise operation: +, -, .*, ./
8 entries per cycle

c) Matrix multiplication
8*8 window x 8*1 vector per cycle

d) Maximum and minimum value of each column
Read in 8 entries in a row per cycle, write back 8 results after
N__ cycles

row



* Matrix multiplication:
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e Arbitrator connects the accelerators with the shared cache.

e Each accelerator can access any of the cache by any
way(pixel, row, column or window).
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Asynchronous Instruction

Execution

* To reduce the workload of NIOS core, we assign the
accelerator instructions by hardware.

!

Instruction
FIFO

Acc1
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Dispenser

Acc 2

™~

Acc N
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Time

g

Synchronous
Accelerators Execute Insl Execute Ins2 Execute Ins3 Instruction
Execution
Master _ _ _
ST Wait Wait Wait
Send Insl Send Ins2 Send Ins3
Asynchronous
Accelerators Execute Insl Execute Ins2 Execute Ins3 Instruction
Execution

Master
Processor

Execute other tasks

Wait

Send Ins1~3

* The master processor spends a lot of time waiting in
synchronous execution mode

e But time for waiting can be used for other tasks in
asynchronous execution mode.

20



Ping-pong Strategy

* To deal with big matrix, we use a ping-pong strategy

Array op (add)

Calculating
block n
cacheA ping cacheB ping cacheC ping
cacheA pong cacheB pong cacheC pong

Reading block n+1

Writing block n-1

DDR Memory
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Demo System

. Altera Stratix Ill on a DE3 develop board
* About 16Mbits block RAMs
1GB DDR2 memory, 533MHz

System clock: 150MHz
Cache size: 128*256*3

* Accelerators: Initializer 4
Array operation 1
Multiplication 1

* Software is C++ code built with NIOS Il Software Build Tools
for Eclipse



Resource Utilization

RESOURCE UTILIZATION OF THE DEMO SYSTEM.

FPGA Stratix 11 multiplication unit Stratix 56 multiplication uni
Modules ALMs 18-bit S M144Ks ALMs -b1 M20Ks
Matrix Cache 27,925 6 384 0 25,234 6 384
Accelerators 31,715 416 9 0 69,496 304 18
MMU 8,113 0 44 2 10,016 0 63
NIOS 1I/f 3,983 4 31 16 3,279 2 156
Demo system | 71,930(53%) 426(74%) 468 (45%) | 18(38%) | 108,025(63%) 312(20%) 621(31%)

* 4x multiplication units on Stratix V with more DSP units.

 The bottleneck of resource is DSP units
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Performance Evaluation

PROCESSING TIME OF MATRIX MULTIPLICATION ON DIFFERENT PLATFORMS. MEASURED BY SECOND.

Platform Matrix size Average Performance
256 512 1024 2048 4096 8192 (GFLOPS)
NIOS I/t 40.73 325.8 2606 - - - 0.0008
VEGAS[4] - - 0.72 - 43.77 - 3.061 (GOPS)'
Proposed on Stratix III | 0.0018 | 0.0141 | 0.1121 | 0.8965 | 7.171 | 57.37 19.06
Intel i7° 0.0004 | 0.0027 | 0.0203 | 0.1327 | 0.9812 | 7.565 117.3

! The result of VEGAS is based on integer multiplication.
2 The result of Intel i7 is based on Windows 7 64bit operating system, Matlab R2013a.

* Theoretical peak performance:

(64+64)*F _,=19.2GFLOPs
* Shows a better performance than VEGAS(vector processor)




* We also evaluate the performance improvement brought by
shared matrix cache and asynchronous instruction

execution:

ELAPSED TIME OF ARRAY OPERATIONS. MEASURED BY MILLISECOND.

Matrix size

Setting 256 512 1024 2048 4096
Without shared cache 0.72 | 3.04 | 12.23 | 48.25 | 191.83
With shared cache 0.35 | 1.36 5.41 21.69 87.07
Master processor 0.08 | 0.30 1.17 4.87 18.67

C=(A.*B)./(A+B)

e Shared cache greatly improves the performance of the
system.

* Workload is greatly reduced by asynchronous execution.



Energy Efficiency

PERFORMANCE COMPARISON AMONG DIFFERENT PLATFORMS.
Platform Performance Power Energy Efficiency
(GFLOPS) (W) (GFLOPS/W)
Nios II/f 0.0008 0.528! 0.0016
ARM Cortex A9- 3.0 7.5/board 0.4/board
Intel 17 3770K 117.3 777 1.52
Proposed on Stratix III 19.1 5.81! 3.28
Proposed on Stratix V 76.8 4.59! 16.7

* FPGA platforms outperforms other platforms in energy

efficiency

* Improves the performance while reducing the power
consumption at the same time comparing Stratix Il and

Stratix V
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Conclusion

Integrate different accelerators on the processor
- With shared matrix cache

We offer a software programming interface with matrix
level instructions

Minimize the workload of master processor

- Asynchronous instruction execution

TODO: Implement more accelerators
Apply the system to mobile applications

29



Thanks
Q&A

N | ”: S Nano-scale Integrated Circuit and System Lab,
Department of Electronic Engineering, Tsinghua University




