A Universal FPGA-based Floating-point
Matrix Processor for Mobile System

Wengiang Wang?, Kaiyuan Guo?!, Mengyuan Gu?,
Yuchun Ma?, Yu Wang?
!Department of EE, Tsinghua University, Beijing, China
’Department of CS, Tsinghua University, Beijing, China

N | t S Nano-scale Integrated Circuit and System Lab,
Department of Electronic Engineering, Tsinghua University

Outline

* Introduction

* Implementation

* Experimental result
* Conclusion

Outline

* Introduction

* Implementation

* Experimental result
* Conclusion

Background

* Mobile system:
UAV, walking robots ...
* Requires low power cost
* Requires high performance
Computer vision, Al ...
Real-time processing

* Many algorithms involves
matrix computation:
SLAM
Image Processing
3D Registration

Target

e A matrix processor with:
a) Low power cost for mobile system
b) High flexibility for different applications

c) High performance to support complicated
tasks

Related work

* cuBLAS and MKL
CPU-GPU platform costs much power

* ASIC chips
low flexibility

Related work

* FPGA platform

* Vector Processor [C. H. Chou, FPGA’11]
Data access problem
Workload for master processor

s

ALU

) ALU

* Accelerator
Dedicated accelerator for one operation, e.g. matrix
multiplication.[T. -C. Lee, WCECS’13]

* A straight forward implementation:
Accelerators communicate through External Memory

Accelerator O Accelerator 1 Accelerator N

Cache O Cache 1l Cache N

i i

itrator

> bottleneck

External Memory

Contributions

* Integration of different accelerators

* A software programming interface with matrix level
Instructions

* Minimize the workload of master processor

Outline

* Introduction

* Implementation

* Experimental result
* Conclusion

10

System Description

I Software
S
Interface

Core
Hardware

NE2 Nev Rnar

System Description

Ping-pong strategy

e

Asynchronous
Instruction Execution

different accelerators

Shared Matrix Cache

DDR2 Memory |
MMU Instructionsl Dispenserl NIOS 1l
e CPU
[IR 1
|
DMA < Accelerators ‘U
AV SARNZ SARZ ARy \
. N
Arbitrator
N
IT{]
Matrix Cache
DE3 Dev Board

12

Shared Matrix Cache

Accelerator O Accelerator1 | eee

Accelerator N

Shared’Cache

ExternallMemory

* Use a shared cache for the communication

* Reduce the I/O with external memory

13

Shared Matrix Cache

* Targets:
a) High bandwidth
b) Supports 2D parallel data access
c) Supports different patterns of data access

BRAM n
= BRAM
wrdata[] _* ——
| Data | - ('i)atta Bandwidth:
adapterlc weeees (" ladapter| |
R { Number of BRAM
rddata[] -
% BRAM
Port A BRAM .
I ort B
Address Address
wraddr(] *tTranslat?r‘ translator \ How to arra nge

these data?

rdaddr(] 14

* The cache is treated as a big 2D matrix
* Divided by 8*8 small windows:

Window ID <> address in BRAM

Relative position <= |ID of BRAM
* Four patterns of data access:
a) Pixel 1*1
b) Column 8*1

c) Row 1*8 e e iR
d) Window 8*8 .= . - -7 A
W(0,0)| W(0,1) ;w'(o,,2)
W(1,0)¥
A | address
BRAMIO"'SB
___ v
2D Matrix Cache

Matrix Accelerators

e Currently we have four kinds of accelerators:
a) Matrix initializer
8 entries per cycle

b) Pixel-wise operation: +, -, .*, ./
8 entries per cycle

c) Matrix multiplication
8*8 window x 8*1 vector per cycle

d) Maximum and minimum value of each column
Read in 8 entries in a row per cycle, write back 8 results after
N__ cycles

row

* Matrix multiplication:

Left matrix Right matrix
_--.) |
8*8 window i8*1 bar
N\ |
h |
\
N \
\ “
N\ t
Ny ¥
> Input Port A r Input Port B
) §
Instruction rdaddr
8*8*32 4.
8*32

[Address 1

Generator J

| o
)

8%32
acchegin {accumulatorj
* 8%32
wraddr _
» Output Port C

Result matrix

8*1 res

17

e Arbitrator connects the accelerators with the shared cache.

e Each accelerator can access any of the cache by any
way(pixel, row, column or window).

Accl

AN

Acc 2

AR

...... Acc N

1

Arbitrator

\ /L

Cache 1

\

2~~~

Cache 2

Cache 3

Asynchronous Instruction

Execution

* To reduce the workload of NIOS core, we assign the
accelerator instructions by hardware.

!

Instruction
FIFO

Acc1

L,

Dispenser

Acc 2

™~

Acc N

19

Time

g

Synchronous
Accelerators Execute Insl Execute Ins2 Execute Ins3 Instruction
Execution
Master _ _ _
ST Wait Wait Wait
Send Insl Send Ins2 Send Ins3
Asynchronous
Accelerators Execute Insl Execute Ins2 Execute Ins3 Instruction
Execution

Master
Processor

Execute other tasks

Wait

Send Ins1~3

* The master processor spends a lot of time waiting in
synchronous execution mode

e But time for waiting can be used for other tasks in
asynchronous execution mode.

20

Ping-pong Strategy

* To deal with big matrix, we use a ping-pong strategy

Array op (add)

Calculating
block n
cacheA ping cacheB ping cacheC ping
cacheA pong cacheB pong cacheC pong

Reading block n+1

Writing block n-1

DDR Memory

Outline

* Introduction

* Implementation

* Experimental result
* Conclusion

22

Demo System

. Altera Stratix Ill on a DE3 develop board
* About 16Mbits block RAMs
1GB DDR2 memory, 533MHz

System clock: 150MHz
Cache size: 128*256*3

* Accelerators: Initializer 4
Array operation 1
Multiplication 1

* Software is C++ code built with NIOS Il Software Build Tools
for Eclipse

Resource Utilization

RESOURCE UTILIZATION OF THE DEMO SYSTEM.

FPGA Stratix 11 multiplication unit Stratix 56 multiplication uni
Modules ALMs 18-bit S M144Ks ALMs -b1 M20Ks
Matrix Cache 27,925 6 384 0 25,234 6 384
Accelerators 31,715 416 9 0 69,496 304 18
MMU 8,113 0 44 2 10,016 0 63
NIOS 1I/f 3,983 4 31 16 3,279 2 156
Demo system | 71,930(53%) 426(74%) 468 (45%) | 18(38%) | 108,025(63%) 312(20%) 621(31%)

* 4x multiplication units on Stratix V with more DSP units.

 The bottleneck of resource is DSP units

24

Performance Evaluation

PROCESSING TIME OF MATRIX MULTIPLICATION ON DIFFERENT PLATFORMS. MEASURED BY SECOND.

Platform Matrix size Average Performance
256 512 1024 2048 4096 8192 (GFLOPS)
NIOS I/t 40.73 325.8 2606 - - - 0.0008
VEGAS[4] - - 0.72 - 43.77 - 3.061 (GOPS)'
Proposed on Stratix III | 0.0018 | 0.0141 | 0.1121 | 0.8965 | 7.171 | 57.37 19.06
Intel i7° 0.0004 | 0.0027 | 0.0203 | 0.1327 | 0.9812 | 7.565 117.3

! The result of VEGAS is based on integer multiplication.
2 The result of Intel i7 is based on Windows 7 64bit operating system, Matlab R2013a.

* Theoretical peak performance:

(64+64)*F _,=19.2GFLOPs
* Shows a better performance than VEGAS(vector processor)

* We also evaluate the performance improvement brought by
shared matrix cache and asynchronous instruction

execution:

ELAPSED TIME OF ARRAY OPERATIONS. MEASURED BY MILLISECOND.

Matrix size

Setting 256 512 1024 2048 4096
Without shared cache 0.72 | 3.04 | 12.23 | 48.25 | 191.83
With shared cache 0.35 | 1.36 5.41 21.69 87.07
Master processor 0.08 | 0.30 1.17 4.87 18.67

C=(A.*B)./(A+B)

e Shared cache greatly improves the performance of the
system.

* Workload is greatly reduced by asynchronous execution.

Energy Efficiency

PERFORMANCE COMPARISON AMONG DIFFERENT PLATFORMS.
Platform Performance Power Energy Efficiency
(GFLOPS) (W) (GFLOPS/W)
Nios II/f 0.0008 0.528! 0.0016
ARM Cortex A9- 3.0 7.5/board 0.4/board
Intel 17 3770K 117.3 777 1.52
Proposed on Stratix III 19.1 5.81! 3.28
Proposed on Stratix V 76.8 4.59! 16.7

* FPGA platforms outperforms other platforms in energy

efficiency

* Improves the performance while reducing the power
consumption at the same time comparing Stratix Il and

Stratix V

27

Outline

* Introduction

* Implementation
* Experimental result
* Conclusion

28

Conclusion

Integrate different accelerators on the processor
- With shared matrix cache

We offer a software programming interface with matrix
level instructions

Minimize the workload of master processor

- Asynchronous instruction execution

TODO: Implement more accelerators
Apply the system to mobile applications

29

Thanks
Q&A

N | ”: S Nano-scale Integrated Circuit and System Lab,
Department of Electronic Engineering, Tsinghua University

