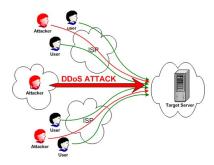
ROTOROUTER: Router Support for Endpoint-Authorized Decentralized Traffic Filtering to Prevent DoS Attacks

Albert Kwon ^{1 2} Kaiyu Zhang ² Perk Lun Lim ² Yu Pan ² Jonathan Smith ² André DeHon ²


 ^{1}MIT

²University of Pennsylvania

December 12, 2014

Denial-of-Service (DoS) Attacks

- Denial-of-service is an attack that makes network or server unavailable
- Overload the network with junk messages so that valid traffic can't make through

• Bank of America, JP Morgan, and Citi (2012)

- Bank of America, JP Morgan, and Citi (2012)
- Bitcoin (Dwolla, Mt. Gox) (2013)

3 / 23

- Bank of America, JP Morgan, and Citi (2012)
- Bitcoin (Dwolla, Mt. Gox) (2013)
- Reddit (2013)

3 / 23

- Bank of America, JP Morgan, and Citi (2012)
- Bitcoin (Dwolla, Mt. Gox) (2013)
- Reddit (2013)
- Sony's Playstation Network (2014)

- Bank of America, JP Morgan, and Citi (2012)
- Bitcoin (Dwolla, Mt. Gox) (2013)
- Reddit (2013)
- Sony's Playstation Network (2014)
- DoS costs \$240k-\$1.2 million in lost revenue/day

- Bank of America, JP Morgan, and Citi (2012)
- Bitcoin (Dwolla, Mt. Gox) (2013)
- Reddit (2013)
- Sony's Playstation Network (2014)
- DoS costs \$240k-\$1.2 million in lost revenue/day

Existing Solutions for DoS

- Software firewalls
 - Non-solution

Existing Solutions for DoS

- Software firewalls
 - Non-solution

- Hardware firewalls
 - Inflexible

Existing Solutions for DoS

- Software firewalls
 - Non-solution

- Hardware firewalls
 - Inflexible

- Replication
 - Expensive

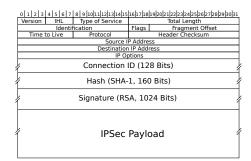
Routers cooperate to only route desired traffic

• End points add metadata to packets

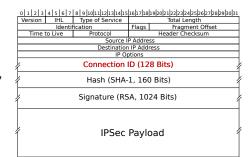
- End points add metadata to packets
- Routers validate all traffic going through

- End points add metadata to packets
- Routers validate all traffic going through
- Enable the end points to "program" the routers
 - Similar to OpenFlow, but decentralized

- End points add metadata to packets
- Routers validate all traffic going through
- Enable the end points to "program" the routers
 - Similar to OpenFlow, but decentralized
- Both protocol change and hardware support

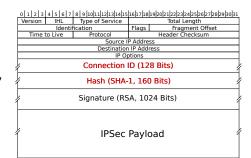

Outline

- Motivation
- 2 ROTOROUTER Network Protocol
- ROTOROUTER Architecture
- ROTOROUTER Evaluation
- Conclusion

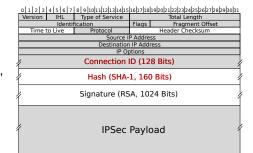

Outline

- Motivation
- 2 ROTOROUTER Network Protocol
- ROTOROUTER Architecture
- 4 ROTOROUTER Evaluation
- Conclusion

Extend TCP/IP



- Extend TCP/IP
- Connection ID: flow
 - IPv4 source + destination, and random number

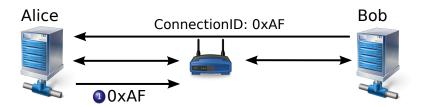


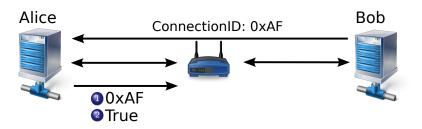
8 / 23

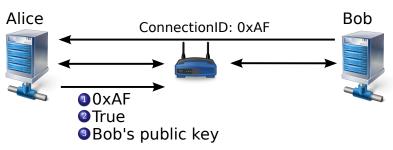
- Extend TCP/IP
- Connection ID: flow
 - IPv4 source + destination, and random number
- Hash
 - Prevents tampering

- Extend TCP/IP
- Connection ID: flow
 - IPv4 source + destination, and random number
- Hash
 - Prevents tampering

- Extend TCP/IP
- Connection ID: flow
 - IPv4 source + destination, and random number
- Hash
 - Prevents tampering
- Public key signature
 - Prevents spoofing
 - Assume that public keys of end points are distributed



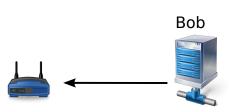

• Receiving end point sends:


- Receiving end point sends:
 - Onnection ID corresponding to the flow

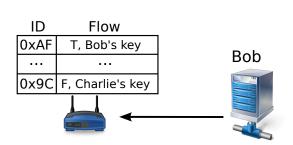
- Receiving end point sends:
 - ConnectionID corresponding to the flow
 - 2 Boolean indicating if flow is desired or not

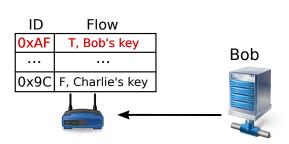
- Receiving end point sends:
 - ConnectionID corresponding to the flow
 - 2 Boolean indicating if flow is desired or not
 - Source node's public key

Alice

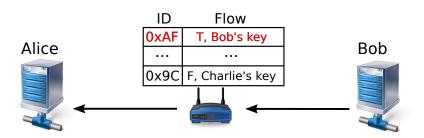


Bob

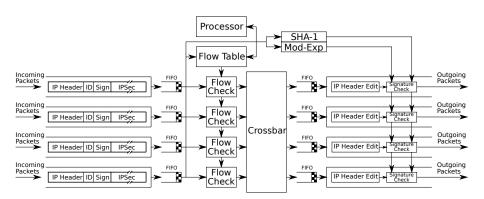

• Router performs:

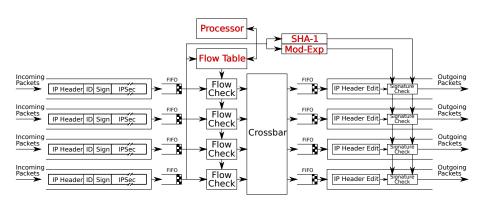

• Router performs:


- Router performs:
 - Look up connection ID



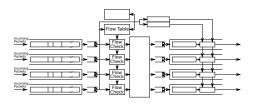
- Router performs:
 - Look up connection ID
 - Verify the hash of the packet
 - Verify the signature with the public key


- Router performs:
 - Look up connection ID
 - Verify the hash of the packet
 - Verify the signature with the public key
 - Orop or relay the packet

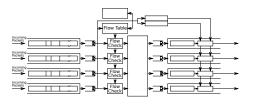

Outline

- Motivation
- 2 ROTOROUTER Network Protocol
- ROTOROUTER Architecture
- 4 ROTOROUTER Evaluation
- Conclusion

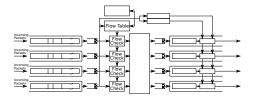
ROTOROUTER Architecture



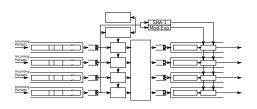
ROTOROUTER Architecture


Flow Table

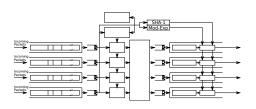
 Dictionary mapping connection ID to source public key, and a valid flow boolean


Flow Table

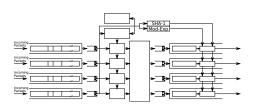
- Dictionary mapping connection ID to source public key, and a valid flow boolean
- Small cache (on BRAM) backed by larger memory
 - Negative flows are cached as well

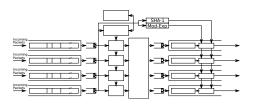

Flow Table

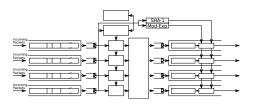
- Dictionary mapping connection ID to source public key, and a valid flow boolean
- Small cache (on BRAM) backed by larger memory
 - Negative flows are cached as well
- Crucial for router performance
 - (Near) Associative memory ¹



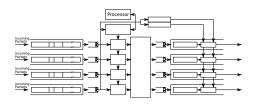
13 / 23


• Cryptographic hash and signature verification

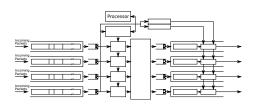

- Cryptographic hash and signature verification
 - Currently: SHA-1 for hash, and RSA for signature


- Cryptographic hash and signature verification
 - Currently: SHA-1 for hash, and RSA for signature
- Crucial for router performance

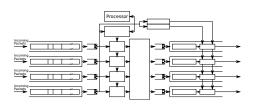
- Cryptographic hash and signature verification
 - Currently: SHA-1 for hash, and RSA for signature
- Crucial for router performance
 - Large exponentiation ⇒ No line-rate public key signature



- Cryptographic hash and signature verification
 - Currently: SHA-1 for hash, and RSA for signature
- Crucial for router performance
 - Large exponentiation ⇒ No line-rate public key signature
 - Okay to use small exponent for verification


On-chip Processor

• Communicates with the end points to setup new flows


On-chip Processor

- Communicates with the end points to setup new flows
 - Only impacts initial latency

On-chip Processor

- Communicates with the end points to setup new flows
 - Only impacts initial latency
- Manages the flow table entries

Outline

- Motivation
- 2 ROTOROUTER Network Protocol
- ROTOROUTER Architecture
- 4 ROTOROUTER Evaluation
- Conclusion

• Hardware prototype on NetFPGA-10G platform

- Hardware prototype on NetFPGA-10G platform
 - Xilinx Virtex 5 (xc5vtx240tffg1759-2) using 65nm technology

- Hardware prototype on NetFPGA-10G platform
 - Xilinx Virtex 5 (xc5vtx240tffg1759-2) using 65nm technology
- Supports four 1 Gbps ports

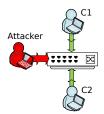
- Hardware prototype on NetFPGA-10G platform
 - Xilinx Virtex 5 (xc5vtx240tffg1759-2) using 65nm technology
- Supports four 1 Gbps ports
- Implemented using Bluespec System Verilog, and open source libraries

- Hardware prototype on NetFPGA-10G platform
 - Xilinx Virtex 5 (xc5vtx240tffg1759-2) using 65nm technology
- Supports four 1 Gbps ports
- Implemented using Bluespec System Verilog, and open source libraries
 - Bluespec: Processor, flow table, crossbar, mod-exp

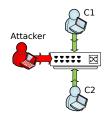
- Hardware prototype on NetFPGA-10G platform
 - Xilinx Virtex 5 (xc5vtx240tffg1759-2) using 65nm technology
- Supports four 1 Gbps ports
- Implemented using Bluespec System Verilog, and open source libraries
 - Bluespec: Processor, flow table, crossbar, mod-exp
 - OpenCore: SHA-1

- Hardware prototype on NetFPGA-10G platform
 - Xilinx Virtex 5 (xc5vtx240tffg1759-2) using 65nm technology
- Supports four 1 Gbps ports
- Implemented using Bluespec System Verilog, and open source libraries
 - Bluespec: Processor, flow table, crossbar, mod-exp
 - OpenCore: SHA-1
 - NetFPGA-10G library: Gigabit ethernet, PCle, etc

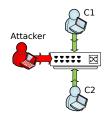
	Ar	Clock	
Module	LUTs	BRAMs	(MHz)
Crossbar w/ Buffers	8249	16	300
Flow Table	38	74	350
Processor	26985	52	200
SHA-1 Module	4×1005	0	125
Mod-Exp	73591	0	200
RotoRouter	112883	142	125
IPv4 Router	22523	35	150
Total available	149760	324	-

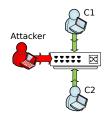

	Area		Clock
Module	LUTs	BRAMs	(MHz)
Crossbar w/ Buffers	8249	16	300
Flow Table	38	74	350
Processor	26985	52	200
SHA-1 Module	4×1005	0	125
Mod-Exp	73591	0	200
RotoRouter	112883	142	125
IPv4 Router	22523	35	150
Total available	149760	324	-

	Area		Clock
Module	LUTs	BRAMs	(MHz)
Crossbar w/ Buffers	8249	16	300
Flow Table	38	74	350
Processor	26985	52	200
SHA-1 Module	4×1005	0	125
Mod-Exp	73591	0	200
RotoRouter	112883	142	125
IPv4 Router	22523	35	150
Total available	149760	324	-


	Area		Clock
Module	LUTs	BRAMs	(MHz)
Crossbar w/ Buffers	8249	16	300
Flow Table	38	74	350
Processor	26985	52	200
SHA-1 Module	4×1005	0	125
Mod-Exp	73591	0	200
RotoRouter	112883	142	125
IPv4 Router	22523	35	150
Total available	149760	324	-

	Area		Clock
Module	LUTs	BRAMs	(MHz)
Crossbar w/ Buffers	8249	16	300
Flow Table	38	74	350
Processor	26985	52	200
SHA-1 Module	4×1005	0	125
Mod-Exp	73591	0	200
RotoRouter	112883	142	125
IPv4 Router	22523	35	150
Total available	149760	324	-


3 machines with1 Gbps Ethernet


- 3 machines with1 Gbps Ethernet
- One attacker flooding the network, while the other two saturate network bandwidth

- 3 machines with1 Gbps Ethernet
- One attacker flooding the network, while the other two saturate network bandwidth

- 3 machines with1 Gbps Ethernet
- One attacker flooding the network, while the other two saturate network bandwidth

• Want to support 10, or even 100, Gbps ports

• Want to support 10, or even 100, Gbps ports

	Crossbar	Flow Table	SHA-1	Mod-Exp
Clock Speed (MHz)	300	350	125	200
Individual	19.2	515	4×0.8	4×1.2
Throughput (Gbps)				
Effective Throughput	8	184	3.2	4.8
@ 125 MHz (Gbps)				

- Want to support 10, or even 100, Gbps ports
- Newer FPGAs support high speeding switching (> 160 Gbps)²

	Crossbar	Flow Table	SHA-1	Mod-Exp
Clock Speed (MHz)	300	350	125	200
Individual	19.2	515	4×0.8	4×1.2
Throughput (Gbps)				
Effective Throughput	8	184	3.2	4.8
@ 125 MHz (Gbps)				

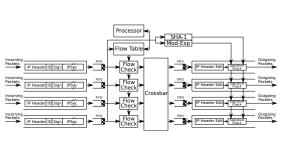
December 12, 2014 20 / 23

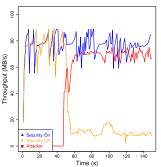
²Z. Dai and J. Zhu. Saturating the transceiver bandwidth: Switch fabric design on FPGAs, FPGA 2012 📑

- Want to support 10, or even 100, Gbps ports
- Newer FPGAs support high speeding switching (> 160 Gbps)²
- Crypto could be replicated
 - Hash and signature primitives could be switched to faster primitives (e.g., eliptical curve)

	Crossbar	Flow Table	SHA-1	Mod-Exp
Clock Speed (MHz)	300	350	125	200
Individual	19.2	515	4×0.8	4×1.2
Throughput (Gbps)				
Effective Throughput	8	184	3.2	4.8
@ 125 MHz (Gbps)				

²Z. Dai and J. Zhu. Saturating the transceiver bandwidth: Switch fabric design on FPGAs, FPGA 2012 📱 🕨


Outline


- Motivation
- 2 ROTOROUTER Network Protocol
- ROTOROUTER Architecture
- 4 ROTOROUTER Evaluation
- Conclusion

Conclusion

- Router assisted DoS protection shows great promise
 - Line-rate public key verification is possible!
- Proof-of-concept router demonstrates low-overhead
- Software and hardware co-design leads to better solutions

Thanks!

Future Work

- Characterizing dynamic behaviors
 - Flow setup, router setup, etc
- Throughput impact on larger scale systems
- Incremental deployment