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▲ Challenges	  
▽ Tight	  power	  budget	  
▽ Heavy	  rou0ng	  architecture	  
▽ Vola0lity	  

Motivation 

▲ Key	  Contribu0ons	  
▽ Study	  Near-‐Vt	  RRAM-‐based	  FPGA	  
▽ Size	  the	  transistors	  in	  RRAM-‐based	  FPGA	  
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▲ Non-‐vola0le	  
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[1] J. Sandrini et al., Heterogenenous Integration of ReRAM Crossbars in a CMOS Foundry Chip,  Published in 
40th International Micro and Nano Engineering Conference (MNE). 

▲ Low/High	  Resistance	  States(LRS/HRS)	  
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Part I: Near-Vt RRAM-based FPGA 
▲ SRAM	  	  	  	  	  	  	  NV-‐SRAM	  
▲ MUX	  	  	  	  	  	  	  	  	  NV-‐MUX	  
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[1] I. Kazi et al., Energy/Reliability Trade-Offs in Low-Voltage ReRAM-Based 
Non-Volatile Flip-Flop Design, IEEE TCAS- I, Vol. 61, No. 11, pp. 3155-3164. 
  

	  
 

[2] P.-E. Gaillardon et al., GMS: Generic Memristive Structure for Non-Volatile 
FPGAs, IEEE/IFIP Int. Conf. on VLSI-SoC, 2012, pp. 94-98. 	
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Impact of Vdd on RRAM Routing Elements	

▲ High	  performance	  
▲ Power	  reduc0on	  
▲ Area-‐saving	  
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MulDplexer:	  RRAM	  vs.	  SRAM 

RRAM parameters: [1]	

Ron = 1 kOhm, 	

Roff = 1 MOhm. 
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.

A. Elmore Delay of RRAM-based Multiplexer
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
Equivalent RC Model

Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.

Resistance and capactiance can be detemined from Fig.

6(a) as follows,
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where R
min

denotes the equivalent resistance of a minimum
size inverter, C

inv

represents the parastic capacitance of a
minimum size inverter, W
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the minimum width transistor [10], R
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resistance of a RRAM, W
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represents the width of pro-
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and C
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programming transistor which is in off state.
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Resistance of RRAM is revelant to programming voltage,
V
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and programming current, I
prog

[], shown as follows.
I
d

is the driving current of a minimum width transistor.
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B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.

[1] D. Sacchetto et al.,  Application of Multi-Terminal Memristive Devices: A Review, IEEE CAS Magazine, Vol. 
13, No. 2, pp. 23-41. 
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▲ Methodology:	  VTR	  flow.	  
▲ Baseline	  Architecture:	  K=6,	  N=10,	  I=33,	  UMC	  
180nm	  Technology	  

Near-Vt RRAM-based FPGA	

-15%	


-10%	

-65%	
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▲ Non-‐negligible	  programming	  transistor	  size	  
▽ Area	  Overhead	  
▽ Parasi0c	  Capacitance	  

Part II: Transistor Sizing 
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▲ RC	  Modeling 
Transistor Sizing	SRAM
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
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Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.
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represents the parastic capacitance of a
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inv
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the minimum width transistor [10], R

on

denotes the equivalent
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W

prog,actual

is
8
<

:

1,W
prog,opt

< 1
W

prog,opt

, 1  W
prog,opt

 � + 1
� + 1,W

prog,opt

> � + 1

(5)

B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.
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Impact of Supply Voltage	
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
Equivalent RC Model

Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.
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B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.
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Study MUXes in FPGA  	
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
Equivalent RC Model

Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.
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tween p-type transistor and n-type. Therefore, actual optimal
W

prog,actual

is
8
<

:

1,W
prog,opt

< 1
W

prog,opt

, 1  W
prog,opt

 � + 1
� + 1,W

prog,opt

> � + 1

(5)

B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.

▲ Impact	  of	  n 

n     Wprog,opt	


▲ Impact	  of	  CL 
CL      Wprog,opt	
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need to be non-uniformly 
sized!	

	


W
pr
og
	  (M

in
.	  W

id
th
	  T
ra
ns
.) 

Vdd	  (V) 



Area Delay Power
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
re

a,
 D

el
ay

 a
nd

 P
ow

er

 

 

SRAM FPGA, Vdd=1.8V
NearïVt SRAM FPGA, Vdd=1.2V
NearïVt RRAM FPGA, Vdd=1.2V
Sized NearïVt RRAM FPGA, Vdd=1.2V
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Sized Near-Vt RRAM FPGA 

-15%	

-10%	


-65%	

-20%	


-2%	


▲ Methodology:	  VTR	  flow.	  
▲ Baseline	  Architecture:	  K=6,	  N=10,	  I=33,	  UMC	  
180nm	  Technology	  
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▲ Contribu0on	  I:	  Near-‐Vt	  RRAM-‐based	  FPGA	  	  
▽ a	  low-‐power	  circuit	  without	  performance	  
degrada0on	  

▲ Contribu0on	  II:	  Improved	  area	  efficiency	  
▽ Non-‐uniformly	  sized	  rou0ng	  transistors	  

Conclusion	
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Q&A !  
Thanks.	


