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▲ Challenges	
  
▽ Tight	
  power	
  budget	
  
▽ Heavy	
  rou0ng	
  architecture	
  
▽ Vola0lity	
  

Motivation 

▲ Key	
  Contribu0ons	
  
▽ Study	
  Near-­‐Vt	
  RRAM-­‐based	
  FPGA	
  
▽ Size	
  the	
  transistors	
  in	
  RRAM-­‐based	
  FPGA	
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▲ Non-­‐vola0le	
  

Resistive Random Access Memory 
(RRAM)	
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[1] J. Sandrini et al., Heterogenenous Integration of ReRAM Crossbars in a CMOS Foundry Chip,  Published in 
40th International Micro and Nano Engineering Conference (MNE). 

▲ Low/High	
  Resistance	
  States(LRS/HRS)	
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Part I: Near-Vt RRAM-based FPGA 
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[1] I. Kazi et al., Energy/Reliability Trade-Offs in Low-Voltage ReRAM-Based 
Non-Volatile Flip-Flop Design, IEEE TCAS- I, Vol. 61, No. 11, pp. 3155-3164. 
  

	
  
 

[2] P.-E. Gaillardon et al., GMS: Generic Memristive Structure for Non-Volatile 
FPGAs, IEEE/IFIP Int. Conf. on VLSI-SoC, 2012, pp. 94-98. 	
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Impact of Vdd on RRAM Routing Elements	


▲ High	
  performance	
  
▲ Power	
  reduc0on	
  
▲ Area-­‐saving	
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RRAM parameters: [1]	


Ron = 1 kOhm, 	


Roff = 1 MOhm. 
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.

A. Elmore Delay of RRAM-based Multiplexer
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
Equivalent RC Model

Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.

Resistance and capactiance can be detemined from Fig.

6(a) as follows,
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where R
min

denotes the equivalent resistance of a minimum
size inverter, C

inv

represents the parastic capacitance of a
minimum size inverter, W

inv

is the size of inverter in terms of
the minimum width transistor [10], R

on

denotes the equivalent
resistance of a RRAM, W

prog

represents the width of pro-
gramming transistor in terms of the minimum width transistor,
and C

off

is the parastic capacitance of a minimum width
programming transistor which is in off state.

Elmore delay [9] of Fig. 6(b) is
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Resistance of RRAM is revelant to programming voltage,
V
prog

and programming current, I
prog

[], shown as follows.
I
d

is the driving current of a minimum width transistor.

V
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With equation (1), equation (2) is converted to
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Equation (3) reaches minmum value when

W
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d

R
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C
off

(4)

However, W
prog

has low-bound as 1 and considering area,
its upbound can be � + 1, where � denotes the ratio be-
tween p-type transistor and n-type. Therefore, actual optimal
W

prog,actual

is
8
<

:

1,W
prog,opt

< 1
W

prog,opt

, 1  W
prog,opt

 � + 1
� + 1,W

prog,opt

> � + 1

(5)

B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.

[1] D. Sacchetto et al.,  Application of Multi-Terminal Memristive Devices: A Review, IEEE CAS Magazine, Vol. 
13, No. 2, pp. 23-41. 
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▲ Methodology:	
  VTR	
  flow.	
  
▲ Baseline	
  Architecture:	
  K=6,	
  N=10,	
  I=33,	
  UMC	
  
180nm	
  Technology	
  

Near-Vt RRAM-based FPGA	


-15%	



-10%	


-65%	
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▲ Non-­‐negligible	
  programming	
  transistor	
  size	
  
▽ Area	
  Overhead	
  
▽ Parasi0c	
  Capacitance	
  

Part II: Transistor Sizing 
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▲ RC	
  Modeling 
Transistor Sizing	
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.

A. Elmore Delay of RRAM-based Multiplexer
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
Equivalent RC Model

Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.

Resistance and capactiance can be detemined from Fig.

6(a) as follows,
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where R
min

denotes the equivalent resistance of a minimum
size inverter, C

inv

represents the parastic capacitance of a
minimum size inverter, W

inv

is the size of inverter in terms of
the minimum width transistor [10], R

on

denotes the equivalent
resistance of a RRAM, W

prog

represents the width of pro-
gramming transistor in terms of the minimum width transistor,
and C

off

is the parastic capacitance of a minimum width
programming transistor which is in off state.

Elmore delay [9] of Fig. 6(b) is
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Resistance of RRAM is revelant to programming voltage,
V
prog

and programming current, I
prog

[], shown as follows.
I
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is the driving current of a minimum width transistor.
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With equation (1), equation (2) is converted to
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Equation (3) reaches minmum value when
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However, W
prog

has low-bound as 1 and considering area,
its upbound can be � + 1, where � denotes the ratio be-
tween p-type transistor and n-type. Therefore, actual optimal
W

prog,actual

is
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B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.
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Impact of Supply Voltage	
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.

A. Elmore Delay of RRAM-based Multiplexer
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
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Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.

Resistance and capactiance can be detemined from Fig.

6(a) as follows,
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where R
min

denotes the equivalent resistance of a minimum
size inverter, C

inv

represents the parastic capacitance of a
minimum size inverter, W

inv

is the size of inverter in terms of
the minimum width transistor [10], R

on

denotes the equivalent
resistance of a RRAM, W

prog

represents the width of pro-
gramming transistor in terms of the minimum width transistor,
and C
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is the parastic capacitance of a minimum width
programming transistor which is in off state.
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Resistance of RRAM is revelant to programming voltage,
V
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and programming current, I
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[], shown as follows.
I
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is the driving current of a minimum width transistor.
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Equation (3) reaches minmum value when
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However, W
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has low-bound as 1 and considering area,
its upbound can be � + 1, where � denotes the ratio be-
tween p-type transistor and n-type. Therefore, actual optimal
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is
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B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.
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Study MUXes in FPGA  	
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Fig. 5: CMOS vs. RRAM in Delay and leakage - Vdd of
32-input multiplexer

interconnects is determined by various factors, such as size
of the driving inverter, parasitic capacitance of programming
transistors, and resistance of RRAM. In this section, we calcu-
late the elmore delay of RRAM-based multiplexers, estimate
the optimal width of programming transistors, and elecritcal
simulations verify it.

A. Elmore Delay of RRAM-based Multiplexer
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Fig. 6: (a) Critical path of RRAM-based Multiplexer and (b)
Equivalent RC Model

Critical path of RRAM-based multiplexer is a path from
input to output with largest number of RRAMs and program-
ming transistors. For instance, the highlighted path in Fig. 2(d)
is the critical path of a 4-input RRAM-based multiplexer. Fig.
6(a) depicts the general case of the critical path and Fig. 6(b)
illustrates its equivalent RC model.
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W
prog,opt

=

s
nV

prog

C
L

W
inv

(2n+ 1)I
d

R
min

C
off

(4)

However, W
prog

has low-bound as 1 and considering area,
its upbound can be � + 1, where � denotes the ratio be-
tween p-type transistor and n-type. Therefore, actual optimal
W

prog,actual

is
8
<

:

1,W
prog,opt

< 1
W

prog,opt

, 1  W
prog,opt

 � + 1
� + 1,W

prog,opt

> � + 1

(5)

B. Leakage Power of RRAM-based Multiplexer

To be finished next semester.
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need to be non-uniformly 
sized!	


	



W
pr
og
	
  (M

in
.	
  W

id
th
	
  T
ra
ns
.) 

Vdd	
  (V) 



Area Delay Power
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 A
re

a,
 D

el
ay

 a
nd

 P
ow

er

 

 

SRAM FPGA, Vdd=1.8V
NearïVt SRAM FPGA, Vdd=1.2V
NearïVt RRAM FPGA, Vdd=1.2V
Sized NearïVt RRAM FPGA, Vdd=1.2V

11	
  

Sized Near-Vt RRAM FPGA 

-15%	


-10%	



-65%	


-20%	



-2%	



▲ Methodology:	
  VTR	
  flow.	
  
▲ Baseline	
  Architecture:	
  K=6,	
  N=10,	
  I=33,	
  UMC	
  
180nm	
  Technology	
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▲ Contribu0on	
  I:	
  Near-­‐Vt	
  RRAM-­‐based	
  FPGA	
  	
  
▽ a	
  low-­‐power	
  circuit	
  without	
  performance	
  
degrada0on	
  

▲ Contribu0on	
  II:	
  Improved	
  area	
  efficiency	
  
▽ Non-­‐uniformly	
  sized	
  rou0ng	
  transistors	
  

Conclusion	
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Q&A !  
Thanks.	



