
© 2015 IBM Corporation

Leftmost Longest Regular Expression Matching
in Reconfigurable Logic

Kubilay Atasu
IBM Research - Zurich

Presented at FPT 2015

Queenstown, NZ

© 2015 IBM Corporation 2

Outline

 Introduction

A general architecture

An optimized architecture

Experiments and results

© 2015 IBM Corporation 3

Text analytics: Extracting information from unstructured text

 distill structured data from unstructured and semi-structured text

 exploit the extracted data in your applications

For years, Microsoft

Corporation CEO Bill Gates

was against open source. But

today he appears to have

changed his mind. "We can be

open source. We love the

concept of shared source,"

said Bill Veghte, a Microsoft

VP. "That's a super-important

shift for us in terms of code

access.“

Richard Stallman, founder of

the Free Software Foundation,

countered saying…

Name Title Organization

Bill Gates CEO Microsoft

Bill Veghte VP Microsoft

Richard Stallman Founder Free Soft..

(from Cohen’s IE tutorial, 2003)

Annotations

© 2015 IBM Corporation

Acceleration of news search services

4

Web Application Server

Document Processor

User Interface

J
A
V
A

C
A
P
I

F
P
G
A

Annotated

Docs POWER 8

Produce results in real time!

News search

query

News Search Engine

News search

query

Relevant

Docs

Relevant

Docs

Annotated

Docs

© 2015 IBM Corporation

A simple information extraction rule

 Find the names (regex) that are at most 20 chars after a title (dict.)

Founder..............Bill Gates

regex

match

at most 20 chars

dict.

match

end offset start offset start offset end offset

start offset

result

end offset

5

© 2015 IBM Corporation

Leftmost longest regular expression matching

 Consider the regex (a|aa|aaaa)

 Consider the input string aaaa

 There are eight distinct regex matches

 A single leftmost longest match (in red)

© 2015 IBM Corporation 7

Outline

 Introduction

A general architecture

An optimized architecture

Experiments and results

© 2015 IBM Corporation

A general leftmost longest regex matching architecture

 Produce (start offset, end offset) tuples for the regex matches

 Sort the tuples in the increasing order of start offsets

– sort in the decreasing order of end offsets if start offsets are equal

 Alternatively, sort the tuples in the decreasing order of end offsets

– sort in the increasing order of start offsets if end offsets are equal

 Eliminate tuples contained by others using a containment filter unit

8

regex

matcher

tuple

sorter

containment

filter input

(text)

(s-offset, e-offset)

tuples
sorted

tuples
leftmost longest

regex matches

all matches: (0,0),(1,1),(2,2),(3,3),(0,1),(1,2),(2,3),(0,3)

after sorting: (0,3),(0,1),(0,0),(1,2),(1,1),(2,3),(2,2),(3,3)

after containment: (0,3)

© 2015 IBM Corporation

Containment filter: Algorithm

 Needs to remember a single tuple (s0, e0) and whether it is valid or not

 When a new tuple (s1, e1) arrives:

– if this is the first tuple then copy (s1, e1) to (s0, e0) and set the valid bit

– else if ((s1>=s0) & (e1<=e0)) then consume (s1, e1) without producing output

– else output (s0, e0) and copy (s1, e1) to (s0, e0)

 When input eos arrives: output (s0, e0) if the valid bit is set and clear the valid bit

– produce output eos

9

matches: (0,1), (3,3), (2,4), (2,5)

sorted: (0,1), (2,5), (2,4), (3,3)

after containment: (0,1), (2,5)

0 1 2 3 4 5

(0,1) (3,3)

(2,4)

(2,5)

© 2015 IBM Corporation

Containment filter: Design

10

 If sorted in the increasing order of start offsets, no need to check for (s1 >= s0)

 filter out (s1, e1) if (e1 <= e0)

 If sorted in the decreasing order of end offsets, no need to check for (e1 <= e0)

 filter out (s1, e1) if (s1 >= s0)

© 2015 IBM Corporation 11

Outline

 Introduction

A general architecture

An optimized architecture

Experiments and results

© 2015 IBM Corporation

Algorithm for computing leftmost regular expression matches

 while i in 0 to input_length-1

–find the match with the smallest start offset that ends at offset position i

 The leftmost maches are marked using solid lines in the below example

 Prior art: Atasu et al: FPL 2013, ASAP 2014, US Patent App. 14/184,751

© 2015 IBM Corporation

Computing leftmost longest matches without sorting (example 1)

 Use a leftmost regex matcher as a building block

– produces the leftmost regex matches in the increasing order of end offsets

– a single match with the smallest start offset can be reported per end offset

 Feed the output of the regex matcher into the containment unit in the inverse order

– matches are now sorted in the decreasing order of end offsets

– no two tuples can have the same end offset

13

leftmost

regex

matcher

inversion

unit

containment

filter input

(text)

partially sorted

(s-offset, e-offset)

tuples

inverted

(s-offset, e-offset)

tuples

leftmost longest

regex matches

leftmost matches: (0,0),(0,1),(1,2), (0,3)

after inversion: (0,3),(1,2),(0,1),(0,0)

after containment: (0,3)

© 2015 IBM Corporation

Computing leftmost longest matches without sorting (example 2)

 Use a leftmost regex matcher as a building block

– produces the leftmost regex matches in the increasing order of end offsets

– a single match with the smallest start offset can be reported per end offset

 Feed the output of the regex matcher into the containment unit in the inverse order

– matches are now sorted in the decreasing order of end offsets

– no two tuples can have the same end offset

14

leftmost

regex

matcher

inversion

unit

containment

filter input

(text)
leftmost longest

regex matches

matches: (0,1), (3,3), (2,4), (2,5)

inverse: (2,5), (2,4), (3,3), (0,1)

after containment: (2,5), (0,1)

0 1 2 3 4 5

(0,1) (3,3)

(2,4)

(2,5)

optional inversion: (0,1), (2,5)

optional

inversion

unit

© 2015 IBM Corporation

A latency hiding inversion unit: overlapping read/write latencies

write_ptr

start_ptr

read_ptr

end_ptr

start_ptr

write_ptr

write_ptr

start_ptr

end_ptr

read_ptr

forward mode

nothing to read

write stream 0

backward mode

read stream 0

write stream 1

forward mode

read stream 1

write stream 2

backward mode

read stream 2

nothing to write

read_ptr

end_ptr

© 2015 IBM Corporation

Computing rightmost longest regex matches

 Invert the NFA of regex, e.g., search for cba instead of abc

 Invert the input stream, i.e., search in the opposite direction

 Invert the match results (the result is sorted) and apply containment

16

0 1 2 3 4 5 matches: (3,3), (2,5), (0,1)

inverse: (0,1), (2,5), (3,3)

after containment: (0,1), (2,5) (0,1) (3,3)

(2,4)

(2,5)

leftmost regex

matcher using

inverted NFA

inversion

unit

containment

filter input

(text)
leftmost longest

regex matches

inversion

unit inverted

input

(text)

© 2015 IBM Corporation 17

Outline

 Introduction

A general architecture

An optimized architecture

Experiments and results

© 2015 IBM Corporation

Experiments

18

 HW: Altera Stratix IV GX530KH40C2, Altera Quartus II V11 tools

 32-bit start and end offset registers, 250 MHz target clock frequency

 25 text analytics regexs, 256-element deep LIFO buffers per regex

 SW: 12-core Intel ® Xeon ® E5-2630 processor, running at 2.6 GHz

 Inversion unit + Containment Unit: ~100 LUTs + ~90 regs + 2 M9K blocks

 Measured speed-up when using 4 HW threads @ ~0.95 GB/s: ~220 fold

 Estimated speed-up when using 16 HW threads @ ~3.8 GB/s: ~880 fold

© 2015 IBM Corporation

Summary & Conclusions

19

A baseline architecture for finding leftmost longest regex matches:

– a regex unit that reports start and end offset positions of the matches

– a sorter unit that sorts the match results based on start & end offset positions

– a containment filter that eliminates the results that are not leftmost longest

An optimized architecture for finding leftmost longest regex matches:

– a regex unit that supports start offset reporting and leftmost matching

• producing results in the increasing order of end offset positions

– a LIFO unit that inverts the results computed by the regex matching unit,

• producing results in the decreasing order of end offset positions

– a filter (containment) unit that operates on the result of the LIFO unit

• filtering out matches having an equal or larger start offset

Adaptation of these architectures to compute the rightmost longest regex matches

An FPGA implementation that achieves > 200 fold improvement in performance

© 2015 IBM Corporation

Leftmost Longest Regular Expression Matching
in Reconfigurable Logic

Kubilay Atasu
IBM Research - Zurich

Presented at FPT 2015

Queenstown, NZ

