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Motivation 
• High-level synthesis (HLS) can automatically generate 

hardware (HW) from software (SW)  
•  A designer can work more productively at a higher level of 

abstraction, reducing time-to-market vs. hand-coded RTL 

• Modern FPGAs are very large 
•  Virtex UltraScale XCVU440 has 4.4 million logic cells, with more 

than 20 billion transistors, making it the world’s densest IC 
•  A designer needs to leverage the available resources intelligently 

to achieve the highest performance 
•  With HLS, one can exploit FPGA’s spatial parallelism much easier 

than when designing in RTL 
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Motivation 
•  LegUp HLS can automatically synthesize Pthreads into 

parallel-operating HW modules 
• Each thread is synthesized into a concurrent HW instance  

•  This approach enables SW engineers to leverage HW parallelism 
through a SW programming paradigm they are likely familiar with 

•  In the context of concurrently operating HW modules 
compiled from Pthreads: 
1.  How should the different modules be connected together? 

(Circuit topology) 
2.  How should the memories be shared between parallel threads? 

(Memory architecture) 
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LegUp HLS Framework 
• Open-source HLS tool from the University of Toronto 

•  Compiles C to Verilog 
•  Leverages the LLVM (3.5) compiler infrastructure 
•  Supports 3 different targets 

1.  Entire program compiled to HW (Pure HW)  
2.  Accelerate a portion of the program to HW (Hybrid flow) 

•  Soft MIPS processor 
•  Hard ARM processor (Altera DE-1 SoC) 

•  Supports 3 different FPGA vendors 
•  Altera, Xilinx, Lattice 

•  Freely distributed to the research community (www.legup.org) 
•  On 4th release (August 2015) 
•  3000+ downloads since 1st release (March 2011) 
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Circuit Topology 
• Unlike software compilers, which target fixed processor 

architectures, HLS compilers can optimize a design’s 
architecture for a specific application 

•  Investigate two circuit topologies: 
1.  Nested topology: HW module is self-contained, any other 

modules it uses are instantiated inside the module (default 
architecture used by LegUp, Vivado HLS) 

2.  Flat topology: All HW modules are instantiated in a common 
module, different modules are connected through an 
interconnect 
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Circuit Topology: Nested 
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Circuit Topology: Nested 
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Circuit Topology: Nested 
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Circuit Topology: Nested 

17 

a 

main 

c 
b 

c 
d 

e 

main 

a b 

c 

d 

e 

c 

b 
arg_A 

logic arg_B 

return_val 
logic FU 



Circuit Topology: Nested 
• Pros: 

•  Simplicity: Any used modules are instantiated within the module 
itself and directly connected inside 

•  The HW module interface is aligned to that of software  

• Cons: 
•  Can unnecessarily replicate HW 
•  Functional units are instantiated within HW modules: Sharing 

between modules is precluded! 
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Circuit Topology: Flat 
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Circuit Topology: Flat 
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System Generator 
• Automatically connects all HW components by traversing 

the call graph of the input SW 
•  Completely integrated into the HLS framework, requires no 

additional input from the user 

• Handles both sequential and parallel execution differently 
•  When multiple HW modules share a HW module, arbitration is 

automatically created 
•  In sequential execution: a simple OR gate is created 
•  In parallel execution: a round-robin arbiter is created 
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System Generator: Interconnect 
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System Generator: Share or Replicate 
• Can share or replicate HW modules based on input 

program and user constraints 
•  For a threaded program: creates as many HW instances of the 

threaded function (+ its descendants) as the # of threads in SW 
•  Allows sharing of functional units between parallel modules 
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System Generator: Deadlock Prevention  
• When multiple modules try to access multiple common 

modules at the same time, a deadlock can occur  
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System Generator: Deadlock Prevention  
• System generator automatically inserts deadlock 

prevention modules where necessary 
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Competitive Edge: Flat Topology w/ System Generator  
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•  Memory ports must be forwarded through all intermediate modules to 
memory 

•  Multiplexers are created at each level of hierarchy 
•  The size/depth of the muxes grow with the # of functions that access the memory 

and the depth of the call hierarchy 

•  Modules instantiated multiple times due to the nested topology also 
increase the multiplexer size unnecessarily 
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Competitive Edge: Flat Topology w/ System Generator  

•  No module replication 
•  No port forwarding 
•  Simple OR gate 
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Memory Architecture 
• Memory architecture plays a critical role in HW systems 

•  Memory bandwidth can often be the limiting factor for performance 

•  FPGA characteristics: 
•  Many on-chip block RAMs  
•  Abundant registers 
•  Both are distributed throughout the chip, and can be accessed in 

parallel with low latencies 

• We want to make use of block RAMs and registers 
efficiently to increase memory bandwidth and           
reduce memory contention among parallel threads 
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Memory Architecture: Memory Partitioning 
• Use points-to analysis to partition memories into global, 

local, and shared-local memories 
1.  A pointer points to a single array: 

•  Array is used by a single function – local memory  
•  Array is used by multiple functions – shared-local memory 

2.  A pointer points to multiple arrays: 
•  Need to resolve pointer references at runtime – global memory 
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Memory Architecture: Local 
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Memory Architecture: Shared-local 
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Memory Architecture: Optimizations 
•  For local/shared-local memories: 
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Memory Architecture: Optimizations 
•  For local/shared-local memories: 
1.  Replicate read-only memories: localize a memory to its 

accessing module 
•  Turns a shared-local memory to local memory 
•  Eliminates stalls due to memory contention – Higher performance 
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Memory Architecture: Optimizations 
•  For local/shared-local memories: 
1.  Replicate read-only memories: localize a memory to its 

accessing module 
•  Turns a shared-local memory to local memory 
•  Eliminates stalls due to memory contention – Higher performance 
•  Eliminates arbitration logic – Lower LUT usage 

2.  Memory to register conversion: implement small arrays 
in registers 

•  Reduces # of RAMs – Lower RAM usage 
•  Reduces latency (RAMs have 1-cycle read latency, registers have 

0-cycle read latency) – Higher performance 
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Memory Architectures: Global  
• Global memories are created inside the global memory 

controller 
•  Provides steering logic to steer memory access to the correct RAM 

at run-time 

memA

memB 

en

en

=

=
3 

2 

addr/data_in
en/write_en

tag

45 



Memory Architectures: Global  
• Global memories are created inside the global memory 

controller 
•  Provides steering logic to steer memory access to the correct RAM 

at run-time 

memA

memB 

en

en

=

=
3 

2 

addr/data_in
en/write_en

tag

46 

•  Limits memory accesses to 2/cycle (RAMs are dual-port) 
•  Only created if necessary 



Memory Architectures: Latencies 
• We vary the read latencies for different types of memories 
1.  Global memories: 2-cycles  

•  Can be connected to many modules (high fan-in/fan-out) 
•  Need to go through steering logic (can be large multiplexors) 

2.  Local/shared-local memories: 1-cycle  
•  Connected to a limited number of modules 
•  Simple connections 

3.  Memories converted to registers: 0-cycle 
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Memory Architecture: Example System 
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Memory Architecture: Example System 
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All independent memories can be accessed concurrently 

Memory partitioning is 
completely automatic! 



Experimental Study 
• We study the impact of different circuit/memory 

architectures on the performance/area of parallel HW 
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Experimental Study 

 

• Synthesized for Altera Stratix V FPGA with Quartus 15.0  
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Benchmark Description 
Alphablend  Alphabends two images 

Barrier  An accumulation benchmark which uses a barrier 

Box Filter  A convolution filter commonly used in image processing  

Dot Product  Dot product of two arrays  

Histogram  Accumulates integers into 5 equally-sized bins  

Matrix Multiply  matrix multiplication of two arrays  

Mutex  An accumulation benchmark which uses a lock  

Vector Add  Performs vector addition of two arrays 
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Flat topology 
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Divider sharing 
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local/shared-local memories 
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Mem2Reg Conversion 
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Disable multiplier sharing 
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Geomean Area-delay Product 
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local/shared-local memories 
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Mem2Reg Conversion 
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Constant memory replication 
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Summary 
• Analyzed two different circuit topologies: Nested vs. Flat 
• Presented a system generator which can: 

•  Automatically share/replicate functions, functional units, memories 
•  Inserts deadlock-prevention modules for parallel operating HW  

•  Investigated three different memory architectures 
•  Global, local, and shared-local memories 
•  Constant memory replication: reduces memory contention 
•  Memory-to-register conversion: decreases memory usage and 

latency  
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Summary 
•  Local/shared-local memories significantly improved 

performance and area 
• Constant memory replication reduces memory contention, 

but degrades area-delay product 
• Sharing functional units across threads had little impact 

on performance, while producing considerable area 
savings 

• Best results: 
•  Performance (41.6% improvement): Flat with local/shared-local, 

divider sharing, mem2reg conversion, and constant memory 
replication (Arch. 8)  

•  Area-delay product (63.3% improvement): Flat with local/shared-
local, divider/multiplier sharing, and mem2reg conversion (Arch. 6) 
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Questions? 
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