
Resource and Memory Management Techniques for
the High-Level Synthesis of Software Threads into

Parallel FPGA Hardware

Jongsok Choi, Stephen Brown, and Jason Anderson

FPT 2015
December 9, 2015

Queenstown, New Zealand

1

Dept. of Electrical and Computer Engineering
University of Toronto

Motivation
• High-level synthesis (HLS) can automatically generate

hardware (HW) from software (SW)
•  A designer can work more productively at a higher level of

abstraction, reducing time-to-market vs. hand-coded RTL

• Modern FPGAs are very large
•  Virtex UltraScale XCVU440 has 4.4 million logic cells, with more

than 20 billion transistors, making it the world’s densest IC
•  A designer needs to leverage the available resources intelligently

to achieve the highest performance
•  With HLS, one can exploit FPGA’s spatial parallelism much easier

than when designing in RTL

2

Motivation
•  LegUp HLS can automatically synthesize Pthreads into

parallel-operating HW modules
• Each thread is synthesized into a concurrent HW instance

•  This approach enables SW engineers to leverage HW parallelism
through a SW programming paradigm they are likely familiar with

•  In the context of concurrently operating HW modules
compiled from Pthreads:
1.  How should the different modules be connected together?

(Circuit topology)
2.  How should the memories be shared between parallel threads?

(Memory architecture)

3

LegUp HLS Framework
• Open-source HLS tool from the University of Toronto

•  Compiles C to Verilog
•  Leverages the LLVM (3.5) compiler infrastructure
•  Supports 3 different targets

1.  Entire program compiled to HW (Pure HW)
2.  Accelerate a portion of the program to HW (Hybrid flow)

•  Soft MIPS processor
•  Hard ARM processor (Altera DE-1 SoC)

•  Supports 3 different FPGA vendors
•  Altera, Xilinx, Lattice

•  Freely distributed to the research community (www.legup.org)
•  On 4th release (August 2015)
•  3000+ downloads since 1st release (March 2011)

4

LegUp HLS Framework
• Open-source HLS tool from the University of Toronto

•  Compiles C to Verilog
•  Leverages the LLVM (3.5) compiler infrastructure
•  Supports 3 different targets

1.  Entire program compiled to HW (Pure HW)
2.  Accelerate a portion of the program to HW (Hybrid flow)

•  Soft MIPS processor
•  Hard ARM processor (Altera DE-1 SoC)

•  Supports 3 different FPGA vendors
•  Altera, Xilinx, Lattice

•  Freely distributed to the research community (www.legup.org)
•  On 4th release (August 2015)
•  3000+ downloads since 1st release (March 2011)

5

Circuit Topology
• Unlike software compilers, which target fixed processor

architectures, HLS compilers can optimize a design’s
architecture for a specific application

•  Investigate two circuit topologies:
1.  Nested topology: HW module is self-contained, any other

modules it uses are instantiated inside the module (default
architecture used by LegUp, Vivado HLS)

2.  Flat topology: All HW modules are instantiated in a common
module, different modules are connected through an
interconnect

6

Circuit Topology: Nested

7

main

a b

c

d

e

Program call graph

Circuit Topology: Nested

8

a

main

c
b

c
d

e

main

a b

c

d

e

Program call graph Circuit architecture

Circuit Topology: Nested

9

a

main

c
b

c
d

e

main

a b

c

d

e

Program call graph Circuit architecture

Circuit Topology: Nested

10

a

main

c
b

c
d

e

main

a b

c

d

e

Program call graph Circuit architecture

Circuit Topology: Nested

11

a

main

c
b

c
d

e

main

a b

c

d

e

Program call graph Circuit architecture

Circuit Topology: Nested

12

a

main

c
b

c
d

e

main

a b

c

d

e

Program call graph Circuit architecture

Circuit Topology: Nested

13

a

main

c
b

c
d

e

main

a b

c

d

e

Program call graph Circuit architecture

Module C is instantiate twice!

Circuit Topology: Nested

14

a

main

c
b

c
d

e

main

a b

c

d

e

c

b
arg_A

logic arg_B

return_val
logic FU

Circuit Topology: Nested

15

a

main

c
b

c
d

e

main

a b

c

d

e

c

b
arg_A

logic arg_B

return_val
logic FU

Circuit Topology: Nested

16

a

main

c
b

c
d

e

main

a b

c

d

e

c

b
arg_A

logic arg_B

return_val
logic FU

Circuit Topology: Nested

17

a

main

c
b

c
d

e

main

a b

c

d

e

c

b
arg_A

logic arg_B

return_val
logic FU

Circuit Topology: Nested
• Pros:

•  Simplicity: Any used modules are instantiated within the module
itself and directly connected inside

•  The HW module interface is aligned to that of software

• Cons:
•  Can unnecessarily replicate HW
•  Functional units are instantiated within HW modules: Sharing

between modules is precluded!

18

Circuit Topology: Flat

19

main

a b

c

d

e

Program call graph

FU

a

d

main b

c

e

inter-
connect

Circuit architecture

All modules reside in a common module

Circuit Topology: Flat

20

main

a b

c

d

e

Program call graph

FU

a

d

main b

c

e

inter-
connect

Circuit architecture

Circuit Topology: Flat

21

main

a b

c

d

e

Program call graph

FU

a

d

main b

c

e

inter-
connect

Circuit architecture

Interconnect is automatically generated
by our System Generator

System Generator
• Automatically connects all HW components by traversing

the call graph of the input SW
•  Completely integrated into the HLS framework, requires no

additional input from the user

• Handles both sequential and parallel execution differently
•  When multiple HW modules share a HW module, arbitration is

automatically created
•  In sequential execution: a simple OR gate is created
•  In parallel execution: a round-robin arbiter is created

22

System Generator: Interconnect

23

memory

arg_A

arg_B

return_val

arbA

arbB

d

e

b

c

a

System Generator: Interconnect

24

memory

arg_A

arg_B

return_val d

e

b

c

a

arbA

arbB

System Generator: Interconnect

25

memory

arg_A

arg_B

return_val

arbA

arbB

d

e

b

c

a

System Generator: Share or Replicate
• Can share or replicate HW modules based on input

program and user constraints
•  For a threaded program: creates as many HW instances of the

threaded function (+ its descendants) as the # of threads in SW
•  Allows sharing of functional units between parallel modules

FU
e0

d1 d0

main

FU
e1

Parallel hardware without FU sharing Parallel hardware with FU sharing

threaded function

26

FU

arb

e0

d1 d0

main

e1

System Generator: Deadlock Prevention
• When multiple modules try to access multiple common

modules at the same time, a deadlock can occur

27

d1

mem0

d0

arb0

mem1

arb1

System Generator: Deadlock Prevention
• When multiple modules try to access multiple common

modules at the same time, a deadlock can occur

28

d1

mem0

d0

arb0

mem1

arb1

System Generator: Deadlock Prevention
• When multiple modules try to access multiple common

modules at the same time, a deadlock can occur

29

d1

mem0

d0

arb0

mem1

arb1

grant
stall

grant

System Generator: Deadlock Prevention
• System generator automatically inserts deadlock

prevention modules where necessary

30

arb0 arb1

rq0 rx0

mem0 mem1

d1 d0

rx1 rq2 rq1 rx2 rx3 rq3

Deadlock prevention modules allow the
circuit to make steady forward progress

Competitive Edge: Flat Topology w/ System Generator

datapath

datapath

datapath
d

c

a

datapath

datapath

datapath
memory

c

b

main

31

Nested topology
(sequential execution)

Competitive Edge: Flat Topology w/ System Generator

•  Memory ports must be forwarded through all intermediate modules to
memory

datapath

datapath

datapath
d

c

a

datapath

datapath

datapath
memory

c

b

main

32

Nested topology
(sequential execution)

Competitive Edge: Flat Topology w/ System Generator

•  Memory ports must be forwarded through all intermediate modules to
memory

•  Multiplexers are created at each level of hierarchy
•  The size/depth of the muxes grow with the # of functions that access the memory

and the depth of the call hierarchy

datapath

datapath

datapath
d

c

a

datapath

datapath

datapath
memory

c

b

main

33

Nested topology
(sequential execution)

Competitive Edge: Flat Topology w/ System Generator

•  Memory ports must be forwarded through all intermediate modules to
memory

•  Multiplexers are created at each level of hierarchy
•  The size/depth of the muxes grow with the # of functions that access the memory

and the depth of the call hierarchy

•  Modules instantiated multiple times due to the nested topology also
increase the multiplexer size unnecessarily

datapath

datapath

datapath
d

c

a

datapath

datapath

datapath
memory

c

b

main

Nested topology
(sequential execution)

34

Competitive Edge: Flat Topology w/ System Generator

•  No module replication
•  No port forwarding
•  Simple OR gate

memory

a

d

main

b

c

Flat topology
(sequential execution)

35

Memory Architecture
• Memory architecture plays a critical role in HW systems

•  Memory bandwidth can often be the limiting factor for performance

•  FPGA characteristics:
•  Many on-chip block RAMs
•  Abundant registers
•  Both are distributed throughout the chip, and can be accessed in

parallel with low latencies

• We want to make use of block RAMs and registers
efficiently to increase memory bandwidth and
reduce memory contention among parallel threads

36

Memory Architecture: Memory Partitioning
• Use points-to analysis to partition memories into global,

local, and shared-local memories
1.  A pointer points to a single array:

•  Array is used by a single function – local memory
•  Array is used by multiple functions – shared-local memory

2.  A pointer points to multiple arrays:
•  Need to resolve pointer references at runtime – global memory

37

Memory Architecture: Local

38

Logic

Mem 0

Mem 1

Mem 2

logic

HW module

•  Directly connected and instantiated inside the accessing module

Memory Architecture: Local

39

Logic

Mem 0

Mem 1

Mem 2

logic

HW module

•  Directly connected and instantiated inside the accessing module
•  No arbitration required

Memory Architecture: Local

40

Logic

Mem 0

Mem 1

Mem 2

logic

HW module

•  Directly connected and instantiated inside the accessing module
•  No arbitration required
•  All local memories can be accessed concurrently

Memory Architecture: Shared-local

41

arb Mem 0

Mem 2
HW module 2

Mem 1 arb

arb

HW module 1

HW module 0

•  Connected through arbitration logic (OR gate/arbiter), instantiated
 outside the accessing modules
•  All independent shared-local memories can be accessed concurrently

Memory Architecture: Optimizations
•  For local/shared-local memories:

42

Memory Architecture: Optimizations
•  For local/shared-local memories:
1.  Replicate read-only memories: localize a memory to its

accessing module
•  Turns a shared-local memory to local memory
•  Eliminates stalls due to memory contention – Higher performance
•  Eliminates arbitration logic – Lower LUT usage

43

Memory Architecture: Optimizations
•  For local/shared-local memories:
1.  Replicate read-only memories: localize a memory to its

accessing module
•  Turns a shared-local memory to local memory
•  Eliminates stalls due to memory contention – Higher performance
•  Eliminates arbitration logic – Lower LUT usage

2.  Memory to register conversion: implement small arrays
in registers

•  Reduces # of RAMs – Lower RAM usage
•  Reduces latency (RAMs have 1-cycle read latency, registers have

0-cycle read latency) – Higher performance

44

Memory Architectures: Global
• Global memories are created inside the global memory

controller
•  Provides steering logic to steer memory access to the correct RAM

at run-time

memA

memB

en

en

=

=
3

2

addr/data_in
en/write_en

tag

45

Memory Architectures: Global
• Global memories are created inside the global memory

controller
•  Provides steering logic to steer memory access to the correct RAM

at run-time

memA

memB

en

en

=

=
3

2

addr/data_in
en/write_en

tag

46

•  Limits memory accesses to 2/cycle (RAMs are dual-port)
•  Only created if necessary

Memory Architectures: Latencies
• We vary the read latencies for different types of memories
1.  Global memories: 2-cycles

•  Can be connected to many modules (high fan-in/fan-out)
•  Need to go through steering logic (can be large multiplexors)

2.  Local/shared-local memories: 1-cycle
•  Connected to a limited number of modules
•  Simple connections

3.  Memories converted to registers: 0-cycle

47

Memory Architecture: Example System

d0

main

arb

global
memory

controller

shared local
mem 0

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1 arb

arb

arb

48

Memory Architecture: Example System

d0

main

arb

global
memory

controller

shared local
mem 0

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1 arb

arb

arb

49

Memory Architecture: Example System

d0

main

arb

global
memory

controller

shared local
mem 0

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1 arb

arb

arb

50

Memory Architecture: Example System

d0

main

arb

global
memory

controller

shared local
mem 0

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1 arb

arb

arb

51

Memory Architecture: Example System

d0

main

arb

global
memory

controller

shared local
mem 0

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1 arb

arb

arb

52

Memory Architecture: Example System

d0

main

arb

global
memory

controller

shared local
mem 0

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1 arb

arb

arb

53

Memory Architecture: Example System

d0

main

arb

global
memory

controller

shared local
mem 0

register

Replicated
ROM0

d1
Replicated

ROM1

local
mem

shared local
mem 1 arb

arb

arb

54

All independent memories can be accessed concurrently

Memory partitioning is
completely automatic!

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW

55

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)

56

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)
2.  Flat topology with a global memory controller

57

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)
2.  Flat topology with a global memory controller
3.  Arch. 2 + divider sharing

58

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)
2.  Flat topology with a global memory controller
3.  Arch. 2 + divider sharing
4.  Arch. 3 + plus multiplier sharing

59

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)
2.  Flat topology with a global memory controller
3.  Arch. 2 + divider sharing
4.  Arch. 3 + plus multiplier sharing
5.  Arch. 4 + local/shared-local memories (memory latency of 2

cycles)

60

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)
2.  Flat topology with a global memory controller
3.  Arch. 2 + divider sharing
4.  Arch. 3 + plus multiplier sharing
5.  Arch. 4 + local/shared-local memories (memory latency of 2

cycles)
6.  Arch. 5 + memory to register conversion (local/shared-local

memory latency = 1, register latency = 0)

61

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)
2.  Flat topology with a global memory controller
3.  Arch. 2 + divider sharing
4.  Arch. 3 + plus multiplier sharing
5.  Arch. 4 + local/shared-local memories (memory latency of 2

cycles)
6.  Arch. 5 + memory to register conversion (local/shared-local

memory latency = 1, register latency = 0)
7.  Arch. 6 + constant memory replication

62

Experimental Study
• We study the impact of different circuit/memory

architectures on the performance/area of parallel HW
•  8 different architectures:

1.  Nested topology with a global memory controller (baseline)
2.  Flat topology with a global memory controller
3.  Arch. 2 + divider sharing
4.  Arch. 3 + plus multiplier sharing
5.  Arch. 4 + local/shared-local memories (memory latency of 2

cycles)
6.  Arch. 5 + memory to register conversion (local/shared-local

memory latency = 1, register latency = 0)
7.  Arch. 6 + constant memory replication
8.  Arch. 7 - multiplier sharing

63

Experimental Study

• Synthesized for Altera Stratix V FPGA with Quartus 15.0

64	

Benchmark Description
Alphablend Alphabends two images

Barrier An accumulation benchmark which uses a barrier

Box Filter A convolution filter commonly used in image processing

Dot Product Dot product of two arrays

Histogram Accumulates integers into 5 equally-sized bins

Matrix Multiply matrix multiplication of two arrays

Mutex An accumulation benchmark which uses a lock

Vector Add Performs vector addition of two arrays

Geomean Performance/Area Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution
Cycles

Fmax Logic Util. DSPs M20Ks

R
at

io
 v

s.
 A

rc
h.

 1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

65

Flat topology

Geomean Performance/Area Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution
Cycles

Fmax Logic Util. DSPs M20Ks

R
at

io
 v

s.
 A

rc
h.

 1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

66

Divider sharing

Geomean Performance/Area Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution
Cycles

Fmax Logic Util. DSPs M20Ks

R
at

io
 v

s.
 A

rc
h.

 1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

67

local/shared-local memories

Geomean Performance/Area Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution
Cycles

Fmax Logic Util. DSPs M20Ks

R
at

io
 v

s.
 A

rc
h.

 1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

68

Mem2Reg Conversion

Geomean Performance/Area Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution
Cycles

Fmax Logic Util. DSPs M20Ks

R
at

io
 v

s.
 A

rc
h.

 1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

69

Disable multiplier sharing

Geomean Performance/Area Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time Execution
Cycles

Fmax Logic Util. DSPs M20Ks

R
at

io
 v

s.
 A

rc
h.

 1

Arch. 1 Arch. 2 Arch. 3 Arch. 4 Arch. 5 Arch. 6 Arch. 7 Arch. 8

70

41.6% 38.3%

Geomean Area-delay Product

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Arch.	 1	 Arch.	 2	 Arch.	 3	 Arch.	 4	 Arch.	 5	 Arch.	 6	 Arch.	 7	 Arch.	 8	

Ra
2o

	 v
s.
	 A
rc
h.
	 1
	

71

local/shared-local memories

Geomean Area-delay Product

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Arch.	 1	 Arch.	 2	 Arch.	 3	 Arch.	 4	 Arch.	 5	 Arch.	 6	 Arch.	 7	 Arch.	 8	

Ra
2o

	 v
s.
	 A
rc
h.
	 1
	

72

Mem2Reg Conversion

Geomean Area-delay Product

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Arch.	 1	 Arch.	 2	 Arch.	 3	 Arch.	 4	 Arch.	 5	 Arch.	 6	 Arch.	 7	 Arch.	 8	

Ra
2o

	 v
s.
	 A
rc
h.
	 1
	

73

Constant memory replication

Geomean Area-delay Product

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Arch.	 1	 Arch.	 2	 Arch.	 3	 Arch.	 4	 Arch.	 5	 Arch.	 6	 Arch.	 7	 Arch.	 8	

Ra
2o

	 v
s.
	 A
rc
h.
	 1
	

74

63.3%

Summary
• Analyzed two different circuit topologies: Nested vs. Flat
• Presented a system generator which can:

•  Automatically share/replicate functions, functional units, memories
•  Inserts deadlock-prevention modules for parallel operating HW

•  Investigated three different memory architectures
•  Global, local, and shared-local memories
•  Constant memory replication: reduces memory contention
•  Memory-to-register conversion: decreases memory usage and

latency

75

Summary
•  Local/shared-local memories significantly improved

performance and area
• Constant memory replication reduces memory contention,

but degrades area-delay product
• Sharing functional units across threads had little impact

on performance, while producing considerable area
savings

• Best results:
•  Performance (41.6% improvement): Flat with local/shared-local,

divider sharing, mem2reg conversion, and constant memory
replication (Arch. 8)

•  Area-delay product (63.3% improvement): Flat with local/shared-
local, divider/multiplier sharing, and mem2reg conversion (Arch. 6)

76

Questions?

77

