

Exploring Pipe Implementations using an
OpenCL Framework for FPGAs

Vincent Mirian and Paul Chow
University of Toronto

{mirianvi, pc}@eecg.toronto.edu

Why OpenCL?

Device A
(GPU)

Device B
(HW

Accelerator)
Host

● Manage heterogeneous system

● Altera release SDK in 2013, Xilinx in 2014

● Evolving standard

– Implementation supports constructs

– OpenCL 2.0 introduce pipe

● How to implement a pipe in modern FPGAs?

But first... what's a pipe?

● Memory Object enabling kernel-to-kernel communication

– 2 kernels: 1 kernel for reading + 1 for writing

– Access to pipe using OpenCL API

● OpenCL Packet == software data structure

● Functionalities: FIFO and RAM-like behavior

– FIFO: default functionality

– RAM: use reservation ID to allocate space in pipe, limited
of reservation IDs per pipe

Applications using a pipe

Kernel A Kernel BPipe

Kernel A
0

Kernel BPipe

● Streaming data (imaging):

– FIFO behavior

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

Applications using a pipe

Kernel A
0

Kernel BPipe

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

Kernel A requests a write reservation ID

R-ID
REQ (3)

R-ID
REQ (3)

R-ID
REQ (3)

R-ID

?

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

Kernel A requests a write reservation ID

R-ID
RESP(P0)

R-ID
RESP(P0)

R-ID
RESP(P0)

R-ID

P0

R-ID

?

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

Kernel A requests a write reservation ID

Kernel A writes to pipe

R-ID

P0

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

P0

Kernel A requests a write reservation ID

Kernel A writes to pipe

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

P0

Kernel A requests a write reservation ID

Kernel A writes to pipe

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

P0

Kernel A requests a write reservation ID

Kernel A writes to pipe

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

P0

Kernel A requests a write reservation ID

Kernel A writes to pipe

Kernel A commits the write reservation ID

R-ID
COMMIT(P0)

R-ID
COMMIT(P0)

R-ID
COMMIT(P0)

R-ID
COMMIT(P0)

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

?

Kernel A requests a write reservation ID

Kernel A writes to pipe

Kernel A commits the write reservation ID

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

?

Kernel A requests a write reservation ID

Kernel A writes to pipe

Kernel A commits the write reservation ID

Kernel B reads from pipe

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

?

Kernel A requests a write reservation ID

Kernel A writes to pipe

Kernel A commits the write reservation ID

Kernel B reads from pipe

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

?

Kernel A requests a write reservation ID

Kernel A writes to pipe

Kernel A commits the write reservation ID

Kernel B reads from pipe

Pipe

Applications using a pipe

Kernel A
0

Kernel B

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)

Kernel A
1

Kernel A
2

R-ID

?

Kernel A requests a write reservation ID

Kernel A writes to pipe

Kernel A commits the write reservation ID

Kernel B reads from pipe

Benefit of using pipes

Device A Device B

Memory Memory

Host

Kernel A Kernel BHost Application

Device A Device B

Kernel A Kernel B

Memory

Pipe

Kernel execution without pipe support

Kernel execution with pipe support

Actions

Actions

12

1

34

2

50% less actions
when using pipe support

Our Context: Embedded Systems

● UT-OCL (University of Toronto)

– OpenCL framework for embedded systems using Xilinx
FPGAs

Device B

Download: http://www.eecg.toronto.edu/~pc/downloads/UT-OCL/

Pipe

Device A
MicroBlaze

(Host)

Compiler +
OCL Impl.

Kernel

FPGA

Host Application
UT-OCL

Driver (e.g.
MicroBlaze)

Implementation?

Our Proposed Implementation

Packet Storage

Write
Cntlr

Read
Cntlr

Read
Status
Array

Write
Status
Array

Read
Reservation ID

Manager

Write
Reservation ID

Manager

Interface to System (AXI4-Lite)

Read Port Write Port

Controllers

Storage for packets (4KB)

Result of function
executed by pipe

Interface to system Address space
encodes function
and parameters

A side note:

Pipe Requirements Altera's Channel [1] Xilinx's Pipe[2] Our Implementation

FIFO Behavior
RAM-like Behavior
Reservation ID >= 1

OpenCL function
signature

Reference:
[1] Altera Corp., Altera SDK for OpenCL- Programming Guide (OCL002-15.0.0), May 2015.
[2] Xilinx Inc., SDAccel Development Environment: User Guide (UG1023), October 2015.

● First to introduce a pipe implementation that conforms
with the OpenCL Spec.

– Context: FPGA

Results: Parallel-to-serial buffer

● Parity computation for 1K x 4byte packets (4KB)

– 16 uB writing, 1 uB reading

● SW impl. model buffer: pipe-sw-bram (on-chip storage)

1- Our implementation
performs faster

2- Workload imbalance

Results: Resource Utilization

● Our implementation uses more FFs and LUTs than pipe-
hw-bram

– Additional cost: implement the flags, mutexes, mutex
operation and counter found in pipe-hw-bram
implementation in hardware

Implementation FF LUT BRAM

Base System 38,998 42,332 69

pipe-sw-bram 39,478 (+1.2%) 42,738 (+1.0%) 70 (+1.4%)

Our
implementation

39,677 (+1.7%) 43,235 (+2.1%) 70 (+1.4%)

Conclusion

● Pipe:

– FIFO and RAM-like behavior

– Reduce kernel-to-kernel communication

● First implementation of a pipe for use within an FPGA

● Observations:

– Our impl. performs faster than software impl.

– Tune reservation ID for application

● UT-OCL: Open-source OpenCL framework for embedded
systems using FPGAs

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

