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Why OpenCL?
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● Manage heterogeneous system

● Altera release SDK in 2013, Xilinx in 2014

● Evolving standard

– Implementation supports constructs

– OpenCL 2.0 introduce pipe

● How to implement a pipe in modern FPGAs?



  

But first... what's a pipe?

● Memory Object enabling kernel-to-kernel communication

– 2 kernels: 1 kernel for reading + 1 for writing

– Access to pipe using OpenCL API

● OpenCL Packet == software data structure

● Functionalities: FIFO and RAM-like behavior

– FIFO: default functionality

– RAM: use reservation ID to allocate space in pipe, limited 
# of reservation IDs per pipe 



  

Applications using a pipe
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● Streaming data (imaging):

– FIFO behavior

● Preparing messages (networking)

– Parallel-to-serial buffer (RAM-like behavior)
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Benefit of using pipes

Device A Device B

Memory Memory

Host

Kernel A Kernel BHost Application

Device A Device B
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Kernel execution with pipe support
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50% less actions
when using pipe support 



  

Our Context: Embedded Systems

● UT-OCL (University of Toronto)

– OpenCL framework for embedded systems using Xilinx 
FPGAs

Device B

Download: http://www.eecg.toronto.edu/~pc/downloads/UT-OCL/

Pipe

Device A
MicroBlaze

(Host)

Compiler +
OCL Impl.

Kernel

FPGA

Host Application
UT-OCL

Driver (e.g.
MicroBlaze)

Implementation?



  

Our Proposed Implementation

Packet Storage
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Interface to System (AXI4-Lite)

Read Port Write Port

Controllers

Storage for packets (4KB)

Result of function 
executed by pipe

Interface to system Address space 
encodes function 
and parameters



  

A side note:

Pipe Requirements Altera's Channel [1] Xilinx's Pipe[2] Our Implementation

FIFO Behavior   
RAM-like Behavior
Reservation ID >= 1

  

OpenCL function 
signature

  

Reference:
[1] Altera Corp.,  Altera SDK for OpenCL- Programming Guide  (OCL002-15.0.0), May 2015.
[2] Xilinx Inc., SDAccel Development Environment: User Guide (UG1023), October 2015.

● First to introduce a pipe implementation that conforms 
with the OpenCL Spec.

– Context: FPGA



  

Results: Parallel-to-serial buffer 

● Parity computation for 1K x 4byte packets (4KB)

– 16 uB writing, 1 uB reading

● SW impl. model buffer: pipe-sw-bram (on-chip storage)

1- Our implementation
performs faster

2- Workload imbalance



  

Results: Resource Utilization

● Our implementation uses more FFs and LUTs than pipe-
hw-bram

– Additional cost: implement the flags, mutexes, mutex 
operation and counter found in pipe-hw-bram 
implementation in hardware

Implementation FF LUT BRAM

Base System 38,998 42,332 69

pipe-sw-bram 39,478 (+1.2%) 42,738 (+1.0%) 70 (+1.4%)

Our 
implementation

39,677 (+1.7%) 43,235 (+2.1%) 70 (+1.4%)



  

Conclusion

● Pipe:

– FIFO and RAM-like behavior

– Reduce kernel-to-kernel communication

● First implementation of a pipe for use within an FPGA

● Observations:

– Our impl. performs faster than software impl.

– Tune reservation ID for application

● UT-OCL: Open-source OpenCL framework for embedded 
systems using FPGAs
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