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Outline 

•  Energy: why care? 
•  Teasers 
•  Architecture  
•  Implication for  

– Applications 
– FPGA Architecture 

•  Information (Coding) 
•  Variation and Aging 
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Energy Setup 
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Energy 
•  Growing domain of portables 

– Less energy/op ! longer battery life 
•  Global Energy Crisis 
•  Power-envelope at key limit 

– E reduce ! increase compute in P-envelope 
– Scaling  

•   Power density not transistors limit sustained ops/s 
– Server rooms 

•  Cost-of-ownership not dominated by Silicon 

– Cooling, Power bill 
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Energy, Reliability,  
Capacity Squeeze 

•  Smaller devices!higher 
variation!increased voltage margins 
–  ITRS shows mostly flat Vdd 

•  Capacitance/gate decreases little 
–  Maybe halved 45nm to 11nm [ITRS] 
–  When Gate count increase 16× ?!? 

•  Power density already limiting use of 
transistor capacity on die 

Trends threaten ability to exploit 
                         smaller technologies. 5 



Power Gap 

•  Based on ITRS2009 data 
•  Assume start power-limited designs, 

gap grows with continued scaling 

DeHon--FPT 2015 6 



uP Power Density 
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The Future of Computing Performance: Game Over or Next Level? 
National Academy Press, 2011 

http://www.nap.edu/catalog.php?record_id=12980 

Watts 



Variation threatens  
E/Op reduction 
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[Bol et al., IEEE TR VLSI Sys 17(10):1508—1519] 

Black nominal 
Grey with variation 
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Min-Energy for multiplication (typically subthreshold) 



Energy Limited 

•  It is Energy that defines  
– Ops/s can extract from a power-limited chip 
– Ops/battery-hour can extract from a portable 

•  If a technology makes E/op worse 
– That technology is worse  

– End-of-scaling 
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Energy 

•  C – driven by architecture 
– Also impacted by variation, aging 

•  V – today, driven by variation, aging 
•  α – driven by architecture, coding/information 
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Energy 
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Architecture Variation/Aging 

Information 



Teasers 
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Processors and Energy 
•  Very little into actual 

computation 
•  Determine and 

Fetch Instruction 
•  Read and Write data 

from memories 
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[Dally et al. /  
Computer 2008] 



FPGA Energy Advantage 

•  No memory energy 
•  Exploit data  

correlation 
(Information) 

•  Performance with  
low clock rate 

•  Fine-grained specialization 
– Just the needed operations 
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[Dally et al. / Computer 2008] 



Energy-Efficiency of Spatial 
Computation 

•  Considerable evidence of lower energy 
on FPGAs than Processors and GPUs 

•  SPICE simulation example 
– V6LX760 (40nm) vs. Core i7 965 (45nm)  
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More Preliminary Evidence 

•  Microsoft Catapult justifies FPGAs in Cloud 
servers by Energy reduction 

•  FPGAs for finance driven by limited power-
density in servers “near” trading floor 

•  Rush to “accelerators” driven by energy 
inefficiency of processor 

•  This conference, FCCM 
– Full of papers showing FPGA energy advantage 
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Energy Advantage FPGAs 

•  Why? 
•  Potential for additional advantage? 
•  How do we increase advantage? 
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Outline 

•  Energy: why care? 
•  Teasers 
•  Architecture  
•  Implication for  

– Applications 
– FPGA Architecture 

•  Information (Coding) 
•  Variation and Aging 
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Architecture 

E(spatial)<E(sequential) 

E(FPGA)<E(processor) 
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Architecture Outline 
•  Rent’s Rule and VLSI Complexity 
•  Memories 
•  Central Processor 
•  Spatial Locality 

– Data 
–  Instruction 

•  Wire Sharing 
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Bisection Width 
•  Partition design into two equal size halves 

– Minimize wires (nets) with ends in both halves 
•  Number of wires crossing is bisection 

width 
–  Information crossing  

•  lower bw = more locality 
N/2 

N/2 

bisection 
   width 



Rent’s Rule 
•  If we recursively bisect a graph, 

attempting to minimize the cut size,  
we typically get: 

BW=IO = c Np 

– 0≤p≤1 
– p≤1 means many 

 inputs come from  
 within a partition 
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[Landman and Russo,  
      IEEE TR Computers p1469, 1971] 
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Rent and Locality 

•  Rent and IO quantifying locality 
–  local consumption 
–  local fanout 

IO = c Np 



Common  
Applications 

•  Rent p=0 
– Shift-register, 1D filter 

•  Rent p=0.5 
– Array multiplier 
– 2D Window Filter 
– nearest-neighbor 

•  Rent p=1.0 
– FFT, Sort 
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VLSI Interconnect Area 

•  Bisection width is 
lower-bound on IC 
width 
–  When wire 

dominated, may be 
tight bound 

•  (recursively) 
•  Rent’s Rule tells us 

how big our chip 
must be 



Rent Network Richness 



Architecture Outline 
•  Rent’s Rule and VLSI Complexity 
•  Memories 
•  Central Processor 
•  Spatial Locality 

– Data 
–  Instruction 

•  Wire Sharing 
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Memory Energy 
•  Reading out of large 

memories expensive 
•  The larger the memory, 

the more expensive per 
bit read 

•  O(M0.5) wire length 
•  Random access must 

send address 
–  O(M0.5log(M)) 

•  Sequential access 
–  O(M0.5)  per bit 
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Processors and Energy 
•  Most energy reading 

out of two memories 
–  Instruction 
–  Data 
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Central Processor with 
Description Locality  

•  p<1.0, total instruction 
bits are O(N) 
–  O(N1.5) 

•  Read/write O(N) bits 
–  O(N1.5log(N)) 
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Instruction Sharing 

•  Problem: absolutely, instruction energy 
dominates data energy 

•  Assumption: every bit operator needs 
its own unique instruction 

•  Opportunity: share instructions across 
operators 
– Looping, wide words 

•  Still O(N1.5) data memory energy 
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Instruction Sharing (I) (p=0.7) 
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Processor I≤128 

Data energy only 

Energy Ratio to Processor W=1, I=N 



SIMD+Instr. Share (p=0.7) 
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Processor W=64, I≤128 

Processor W=1, I≤128 

Energy Ratio to Processor W=1, I=N 



Architecture Outline 
•  Rent’s Rule and VLSI Complexity 
•  Memories 
•  Central Processor 
•  Spatial Locality 

– Data 
–  Instruction 

•  Wire Sharing 
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Data Locality 

•  Problem: Must pay O(N0.5) for every 
read since data must be moved in and 
out of memory. 

•  Opportunity: 
compute local 
to data 
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Sequential with Data Locality 
•  Place for locality --

Rent Partitions 
•  Store data at 

endpoints 
•  Send through network 

from producer to  
consumer 

•  Store location at 
leaves – O(log(N)) 

•  Build H-Tree to  
keep area to  
      O(Nlog(N)) 
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Sequential with Data Locality 
•  Area = O(Nlog(N)) 
•  Sending addresses 

log(N) bits at top 
•  Signals lower O(1) 
•  Only send a few 

over top O(Np) 
•  O((log1.5N)Np+0.5)  

for p>0.5 
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Data Local Compare (p=0.7) 
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Processor W=1 
Processor W=64 

Energy 

Gates (N) 



Data Local Compare (p=0.7) 
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Processor W=1 
Processor W=64 

Data W=1 

Energy 

Gates (N) 



Data Local Compare (p=0.7) 
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Processor W=1 
Processor W=64 

Data W=1 

Data W=64 

Energy 

Gates (N) 



Instruction Locality 

•  Problem: Multiply energy by O(log(N)) 
to send an address up the tree 

•  Opportunity: store 
instructions local 
to switches 
–  In tree 

•  …what an FPGA does! 
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Fully Spatial (FPGA) 
•  An FPGA 
•  Each signal gets  

own wire 
•  No addresses 
•  Configuration local 
•  Area grows as 

 O(N2p) for p>0.5 
•  Energy O(N2p)  

      for p>0.5 
"  Θ(N) for p<0.5 
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p=0.7 Compare to Processor 
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Processor W=64, I≤128 

Energy Ratio to Processor W=1, I=N 



p=0.7 Compare to Processor 
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Processor W=64, I≤128 

FPGA 

Energy Ratio to Processor W=1, I=N 



p=0.7 Compare to FPGA 

DeHon--FPT 2015 45 

Processor W=64, I≤128 

Energy Processor/FPGA 

FPGA 



Asymptotic Energy 

Org Any p p<1.0 1>p>0.5 p=0.5 p<0.5 
Processor O(N1.5log1.5N) O(N1.5logN) 

Description Locality 
FPGA  
2-metal 

O(N2p) O(Nlog2N) Θ(N) 
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Note break at p=0.75 



p=0.8 Compare to FPGA 
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Processor W=64, I≤128 

FPGA 

Energy Processor/FPGA 



Compare around p=0.75 

•  Breakpoint at p=0.75 
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p=0.7 p=0.8 

FPGA 
Processor W=64, I≤128 

Energy Processor/FPGA 



Intuition 

•  Given a good spatial layout 
–  It is cheaper to transmit the result of  

a gate to its well-placed consumers 
•  Fixed metal layers: average wire length 

o p<0.5:     O(1)  
o p<0.75:   O(N2p-1) < O(N0.5)  
o p>0.75:   O(N2p-1) > O(N0.5)  

– Than to  
•  Fetch inputs from a  

      large central memory 
o O(N0.5) 

DeHon--FPT 2015 49 



Architecture Outline 
•  Rent’s Rule and VLSI Complexity 
•  Memories 
•  Central Processor 
•  Spatial Locality 

– Data 
–  Instruction 

•  Wire Sharing 
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Wiring Dominates 

•  Problem: When p>0.5 wiring dominates 
area  
       ! force longer wires 

•  Opportunity: Share wires 
   But also, keep instructions local to switches 
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Instructions Local to Switches 
•  Constant metal 
•  Build p<0.5 tree 
•  Store bits local to 

each tree level 
•  Read out of memory 

there 
•  Bits/switch differs 

with tree level  
•  Signal on wire 

dominates reads 
•  O(Np+0.5) for p>0.5 
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Instructions Local (p=0.8) 
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Processor W=1 FPGA 

Processor W=64 

Energy 

Gates (N) 



Instructions Local (p=0.8) 
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Processor W=1 

Data W=1 

FPGA 

Multicontext W=1 

Energy 

Gates (N) 



Instructions Local (p=0.8) 
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Processor W=1 

Processor W=64 

Data W=1 

Data W=64 

FPGA 

Multicontext W=64 

Multicontext W=1 

Energy 

Gates (N) 



Results: Energy 

Org Any p p<1.0 1>p>0.5 p=0.5 p<0.5 
Processor O(N1.5log1.5N) O(N1.5logN) 

Description Locality 
Data Locality 
(Packet Switch) 

O(Np+0.5log1.5N) O(Nlog2.5N) O(Nlog1.5N) 

FPGA  
2-metal 

O(N2p) O(Nlog2N) Θ(N) 

Multicontext O(Np+0.5) O(NlogN) Θ(N) 
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Compare vs. p, W=1, N=219 
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Processor 

Multicontext 

FPGA 

Energy 

Rent p 

VTR7 
Designs 

[Park et al./ 
FPT2015] 



Compare vs. p, W=64, N=224 
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Processor 

Data 

FPGA 

Multicontext 

Energy 

Rent p 



Architecture 

•  There are architectural energy advantages to 
FPGAs over processors 
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Processor  
W=64 

p=0.7 
Energy Processor/FPGA 

FPGA 

Energy 

Rent p 



Optimizing FPGAs and 
Applications 
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Tune Parallelism 

•  For many, regular designs we can tune 
the parallelism in the implementation 
on top of the FPGA 

•  Parameterize number of PEs 
•  Store data in Embedded Memories 
•  Tune to balance Memory vs. 

Interconnect costs 
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Optimal Level of Parallelism 
•  For regular designs 

– Build common Operator  
– Share amongst logical operations 
– Use embedded RAMs to hold state of 

multiple operators 

DeHon--FPT 2015 62 
[Kadric et al./FCCM2014] 



FPGA Energy Efficiency 
•  When data memory dominates 
•  Question is not: 

– How efficient is FPGA vs. ASIC? … but 
– How efficient is FPGA memory vs. ASIC memory? 

DeHon--FPT 2015 63 
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FPGA Memory Energy 
Optimization 

•  Energy inefficiency from 
– Memory blocks too large 
– Memory blocks too frequent, infrequent 
– Activating memory unnecessarily 

•  Can get within factor of 2 
– Appropriate distribution of blocks 
– Efficient memory banking 

DeHon--FPT 2015 64 
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Modern FPGA 
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Logic 
Cluster 

Memory 
Bank 

Memory 
Frequency 

•  Memory Bank size?  (Distribution of sizes?) 
•  Memory Bank frequency? 



Matrix Multiply, Single Memory 
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Energy normalized to best match 

[Kadric et al./FPGA2015] 



Internal Banking 

•  Recall memory 
energy scale as 
O(M0.5) 

•  Continuous 
Hierarchy Memory  
–  Internal Banking 

•  Only pay as much 
energy as need 
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Information 
(Switching Activity) 
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Spatial 2 transitions + 2 transitions ! 12 transitions 

Time Multiplexing 
Decorrelates Signals 

[Park et al./FPT2015] 



Encode to Reduce α
•  Dominant FPGA energy  

–  Is energy in wires 
– especially in p>0.5 cases 

•  Encode to reduce switching 

DeHon--FPT 2015 70 [Singh+DeHon/unpublished] 

[Tuan et al./ 
FPGA 2006] 



Outline 
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Variation and Aging 
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Voltage Challenge 

•  End of Dennard Scaling 
– Subthreshold slope prevents linear reduction 

of Voltage with feature size 
•  Variation 

– Devices no longer “identical” 
– Typically accommodate with higher voltage 

•  Aging 
– Devices change 
– Typically accommodate with higher voltage 
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Inflection Point Collision 
Defeat Scaling 

•  Spend energy for  
reliability 
– Margins 
– Replication 

•  Reduce or eliminate 
net benefits of  
feature size  
reduction 
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Variation threatens  
E/Op reduction 

DeHon--FPT 2015 

[Bol et al., IEEE TR VLSI Sys 17(10):1508—1519] 

Black nominal 
Grey with variation 
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Min-Energy for multiplication (typically subthreshold) 
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Driven by Tails 

•  High margins driven by uncommon tails 
– Most devices much better 

•  Large device count ! sample further 
into tails 

Vth 

P
D

F 

76 Mehta 2012: 22nm PTM LP – 10,000 samples 
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Wear Out 
•  Reduced burnin opportunity 
•  Aging: NTBI, HotCarrier, Electromigration, … 
•  Forces margin for End-of-Life 

–  …and that may not be enough 

[Stott, FPGA 2010] 

Cyclone III 
(65nm) 

77 



Post Fabrication 
Configurability 

•  ASICs bind functions to physical 
transistors before fabrication 
– Before know behavior of device 

•  FPGAs bind functions to physical 
devices after fabrication 
– After device characteristics determined 
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Variation Tolerance 
•  Idea: assign resources, post fabrication to 

compensate for variations 
•  Opportunity: 

– Balance fast paths and slow paths 
– Assign slow resources to non-critical paths 
– Avoid devices in uncommon tails 
– Scale voltage down more aggressively 

•  Fixed design limited to worst-case path 
– Must scale voltage up so path meets timing 

•  Paradigm shift: Component-specific mapping 
79 



Variation Challenge 

•  Use of high Vth resource forces high 
supply voltage (Vdd) to meet timing 
requirement 

•  Delay:  CV/I  and I goes as (Vdd-Vth)2 
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Component-Specific 

•  Avoid high Vth resource  
•  Allow lower supply voltage (Vdd) to meet 

timing requirement 
•  Delay:  CV/I  and I goes as (Vdd-Vth)2 
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Component-Specific 
Assignment 

•  Could come out other way 
– Best mapping unique to component 
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Lifetime Adaptation 
•  Issues: Devices will wear out during operation 

–  Parameters vary with time 
–  E.g. resistance increases ! slower operation 

•  Opportunity: reconfigure to replace bad or slow 
devices 

•  Detect: Concurrent error detection, RAZOR, light-
weight application checks, periodic self test 

•  Recover: reassign resources 
–  re-invoke mapping 

•  Paradigm shift: mapping throughout lifetime 
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Energy vs Vdd (des) 

•  Nominal uses 
minimum size 

84 DeHon--FPT 2015 [Mehta,  FPGA 2012] 



Energy vs Vdd (des) 

•  Nominal uses 
minimum size 
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Energy 
Margin 

DeHon--FPT 2015 [Mehta,  FPGA 2012] 



Energy vs Vdd (des) 

•  Nominal uses 
minimum size 

•  Delay-aware 
routing 
reduces 
energy margins 
1.  Smaller sizes 

86 

Energy 
Savings 
(Sizing) 

DeHon--FPT 2015 [Mehta,  FPGA 2012] 



Energy vs Vdd (des) 

•  Nominal uses 
minimum size 

•  Delay-aware 
routing 
reduces 
energy margins 
1.  Smaller sizes 
2.  Lower 

voltages 

87 

Energy 
Savings 
(Vdd) 

DeHon--FPT 2015 [Mehta,  FPGA 2012] 



Energy vs Vdd (des) 

•  Nominal uses 
minimum size 

•  Delay-aware 
routing 
reduces 
energy margins 
1.  Smaller sizes 
2.  Lower 

voltages 
3.  Less 

Leakage 

88 

Energy 
Savings 
(Total) 

DeHon--FPT 2015 [Mehta,  FPGA 2012] 



Minimum Energy vs Technology 

•  Delay-oblivious 
scales to 16nm 

•  Delay-aware 
scales to 12nm 
at least…. 

•  Extend useful 
life of Silicon 
technology 
generation 
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Energy Increase 

Energy Decrease 

DeHon--FPT 2015 [Mehta PhD thesis 2012 (refined from  FPGA 2012)] 

Energy Increase 



Delay Map 

•  LAB (27,22) 
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[Gojman, FPGA2013] 



Reduce Vdd  
(Cyclone IV 60nm LP) 

DeHon--FPT 2015 91 
[Gojman, FPGA2013] 
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Choose Your own Adventure 
•  Idea: Precompute 

Alternate mappings 
– Still just one 

bitstream 

[Rubin, FPGA 2008] 92 
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Defect-Level Viable  
with FPGAs 

•  Fine-grained repair  
•  Avoiding routing 

defects 
–  Tolerates >20% 

switch defects 
–  Ongoing work 

•  Different defect types 
and resources 

•  Don’t have to 
sample tails 

93 [Rubin/unpublished] 
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Lifetime Failure? 
Go back to alternatives 

and load again. 
–  Maybe just the one  

that failed. 
–  Millisecond repair. 

94 [Giesen et al./unpublished] 



Wrapup 
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Fund. Energy Benefits of FPGAs 
•  Architecture 

– Minimize energy in data movement 
•  Asymptotic advantage 

– Bound effects of mismatch 
•  Application  

– Tune parallelism to problem and problem size 
– Specialize to application 

•  Information – exploit correlation, switching 
•  Post-fabrication configuration 

– Avoid tails of variation and aging 
– Smaller features, lower voltage 
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