

Energy Minimization in the Time-Space Continuum

Hyunseok Park, Shreel Vijayvargiya, André DeHon andre@seas.upenn.edu

Energy Minimization

- Time-Multiplexed FPGAs save energy?
 - Trimberger [FCCM 1997] says no
 - DeHon [FPGA 2013] says theoretically
- Key issues
 - FPGAs long wires consume most energy
 - TM reduce area, reduce wire lengths
 - But add energy for memories and wire sharing
- Can TM FPGAs reduce wires enough
 - To provide net win versus added costs
- Show TM does not reduce energy

Outline

- Review Spatial, Time-Multiplexed
 How we turn the knob space→time
- Time-Multiplexed Optimization
- Sweep space (time-space continuum)
- Why come out the way it did?
- Sensitivity
- Conclude

Circuit Level Energy

$E \propto \alpha C V^2$

- C driven by wire lengths
 - Including wire lengths and uses in memory
- Elaborate designs to circuit and wire level
- Estimate areas and wire lengths
 - See papers for details

Spatial Design

- PE per LUT
- Network connect LUTs
 - Dedicate wire per net
- Allow Locality
 - Short connections
- Place exploit locality
 - Minimize long nets
 - Minimize channel widths
- Tune Rent Parameters

Time Multiplexed Design

- Sequence multiple LUTS on each PE
 4 LUTs/PE shown
- Sequence nets on wires, switches

 Fewer wires
- Add memories
 Data, Instructions
- Exploit same locality
- Tune Rent Parameters

Space-Time Continuum

7

Time Multiplexing Reduces Wirelength

Side Length vs. Pt (stereovision2) 0.013 S=20.012 0.011 S=64 S=128 0.01 Length (m) 0.009 ummunummunumunum 0.008 0.007 0.006 0.005 0.004 0.2 0.3 0.7 0.8 0.9 0.1 0.4 0.5 0.6 1 Pt

FPT 2015

Spatial 2 transitions + 2 transitions \rightarrow 12 transitions

Time Multiplexing Adds Memories

- Memories
 - Data
 - Instructions
- Costs energy to read from memories (and write data)

TM Memory Can Dominate

- Flat Design
- Memory dominates

Energy Breakdown

Outline

Review Spatial, Time-Multiplexed
 – How we turn the knob space→time

Time-Multiplexed Optimization

- Sweep space
- Why did it come out the way it did?
- Sensitivity
- Conclude

TM Fully Sparse

TM Data Driven

01

Activate INSTRUCTION MEMORY

Space-Time Continuum

15

Energy in TS-Continuum (Ratio to Spatial)

All Benchmarks

Outline

- Review Spatial, Time-Multiplexed
 How we turn the knob space → time
- Time-Multiplexed Optimization
- Sweep space
- Why come out the way it did?
- Sensitivity
- Conclude

What Happened to Energy?

Energy Minimization Question

- Key issues
 - FPGAs long wires consume most energy
 - TM reduce area, reduce wire lengths
 - But add energy for memories and wire sharing
- Can TM FPGAs reduce wires enough
 To provide net win versus added costs

Wirelengths not Reduced

FPT 2015

Why Wirelengths not Reduced?

Wires don't dominate!

Sensitivity

Conclusion

- Spatial designs minimize energy
 - At least for typical interconnect requirements (Rent p < 0.75)
 - Up to half million LUTs
- Time-Multiplex designs can save area
 - When wire dominated → but typical designs are not that wire dominated
 - When switch dominated
 - But not enough to offset energy
 - Decorrelation
 - Added memory energy