Analyzing the Divide between FPGA Academic and Commercial Results

Presentation at FPT 2015, Queenstown, New Zealand

Elias Vansteenkiste
Ghent University, Belgium
Elias.Vansteenkiste@ugent.be

Alireza Kaviani and Henri Fraisse Xilinx CTO Research Lab {Alireza.Kaviani, Henri.Fraisse}@xilinx.com

Introduction

- Increasing capacity and performance of FPGAs
 - Process technology
 - Architecture
 - CAD tools
 - Contributions both from industry and academia
- Recent years: fewer architecture and tool ideas seeded from academic community!
- One possible reason:
 - Significant performance gap between the academic and commercial framework

Evaluation Frameworks

Comparison with latest commercial tools and architectures

Measures: Speed-performance, Area efficiency and Runtime

Quality of Results F1/F2

	Geomean	Geo. Std Dev
Speed-performance	2.24 x	1.45x
Area-efficiency	0.95 x	1.52x

- Speed-performance gap is worrisome
- Area-efficiency gap is acceptable

Runtime

- Geomean: 2.2x
- Geo. Std. Dev.: 1.3x
- RT-size scalability:
 - RT gap x2 for each 60K LUT increase
- RT breakdown:
 - Placement: relative large runtime consumer
 - Small benchmark designs, easy to route

Architecture gap versus Tool gap

[1] E.Hung, "Mind The (Synthesis) Gap: Examining Where Academic FPGA Tools Lag Behind Industry," in FPL 2015

Mind The Synthesis Gap

Reproduced from [1]

[1] E.Hung, "Mind The (Synthesis) Gap: Examining Where Academic FPGA Tools Lag Behind Industry," in FPL 2015

Hybrid Flow: ABC-Vivado

 Combine merits of academic tools with the credibility of commercial tools.

ABC-Vivado: Motivations

- Evaluation of
 - Quality of logic optimization and technology mapping
 - Architecture and tool optimization ideas, for example [2], [3], [4], [5], ...
- [2] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen, "Mapping into LUT structures," in *DATE 2012*, pp. 1579-1584.
- [3] A. Mishchenko, "Enumeration of irredundant circuit structures," in IWLS 2014.
- [4] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P. lenne, "Rethinking FPGAs: Elude the Flexibility Excess of LUTs with And-Inverter Cones," in FPGA 2012
- [5] A. Mishchenko, R. Brayton, S. Jang and V. Kravitz, "Delay Optimization using SOP balancing," in ICCAD 2011

Hybrid Flow Results

- Initial results: basic script
 - All metrics within 5% except for runtime
 - Logic opt. and tech. mapping <u>NOT</u> the reason for the divide
- Best ABC script
 - Consists of multiple iterations of
 - SOP balancing [5]
 - Mapping to 6 LUTs
 - Retaining the best result
 - Fmax +2.8%
 - Area (CLBs) -1.8%
- · At the expense of runtime

[5] A. Mishchenko, R. Brayton, S. Jang and V. Kravitz, "Delay Optimization using SOP balancing," in ICCAD 2011

Academic Benchmark Suites

- Can't separate benchmark designs from their framework
- Overview of academic frameworks
 - 20 MCNC VPR homogeneous LUT-only architecture (48nm) [6][7][8]
 - VTR k6_frac_2ripple_N8_22nm
 - Titan Quartus II & VPR Stratix-IV blocks and academic routing architecture

^[6] A. Petkovska, D. Novo, A. Mishchenko and P. Ienne, "Constrained interpolation for guided logic synthesis," in ICCAD 2014.

^[7] DeHon, André, and Nikil Mehta. "Exploiting partially defective LUTs: Why you don't need perfect fabrication," in ICFPT 2013

^[8] P. E. Gaillardon, X. Tang, G. Kim and G. De Micheli (2015). "A Novel FPGA Architecture Based on Ultrafine Grain Reconfigurable Logic Cells." in TVLSI 2015

Commercial Design Suite Xilinx QoR – Vivado - Ultrascale

- >80 designs
 - Mostly customer designs
- 100K<size<3M blocks
- Noticeable difference:
 - depth profile of the critical zone

Depth Profile Comparison

Results of the ABC-Vivado Flow

E	arly Depth	Fmax	Area
Whole suite	-16	+2,5	-1,8
High depth	-24	+5	-3
Low depth	-13,5	+0,4	-1
Arithmetic	-7	+1,1	-1

- Less emphasis on early depth reduction
- Uncertainty about post routing critical path

Conclusions (1)

- Has the divide grown beyond acceptance?
 - Speed-performance 2.2x
 - Hard to assess the merits of academic ideas
- Solutions
 - Address the divide by leveraging the commercial frameworks as much as possible
 - Hybrid frameworks lead to credible results
 - The Vivado–ABC flow is able to improve QoR with 5% for HD designs
 - requires joint cooperation of academic and commercial interested parties

Conclusions(2)

- Benchmark design suites
 - Trend towards low depth, highly pipelined designs
 - Focus research on retiming instead of early depth reduction.
- Evaluation framework is available online
 - github.com/EliasVansteenkiste/ EvaluationFramework

Questions