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Using Round-Robin Tracepoints
to Debug Multithreaded HLS 
Circuits on FPGAs
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What this talk is about…

How to allow designers to debug HLS circuits?

In past work we developed a debugging tool:
• Software-like debugger 
• Interfaces with an HLS circuit
• Only worked for single-threaded C code

What needs to change to support multithreaded code?
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High-level synthesis  

1. Faster development

2. Software designers target FPGAs

Software designers need a full ecosystem of tools

• Testing

• Debugging

• Optimization

• ….

In this talk, I am going to focus on debugging

HLS

Source Code

.c
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Bugs in HLS systems

main() {
int i;

}

HLS Generated
RTL

HLS

FPGA
HLS Generated

Hardware

Other 
Hardware

Other 
Hardware

I/O Devices

These are the bugs 
we are targeting.

Kernel-level bugs
• Self-contained
• Easy to reproduce

Debug C code on 
workstation (gdb).

RTL Bugs & RTL Verification
• Incorrect use of HLS 

tools

Run C/RTL co-simulation 
on workstation.

System-Level Bugs
• Bugs in interfaces
• Dependent on 

interaction timings
• Hard to reproduce
• Require long run-

times

Debug on FPGA

(Requires observing 
internals of FPGA)
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General Hardware Debug

Commercial ELA tools (SignalTap II / Chipscope Pro):

Can we use these tools to debug HLS circuits? No

1. Software designers? Beyond their expertise

2. Hardware designers? Forces them to give up higher-level abstraction

3. It’s very hard. HLS transformations means RTL doesn’t look like the C code

Your 
RTL 

Circuit

Debug Tool:
- Chooses signals to trace
- Debug circuitry added

Run
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Previous Work

• Software-like debugging experience

• Circuit runs at full speed (record, then retrieve)

• Only works with single-threaded C code

HLS

Trace Buffer 

(On-Chip Memory)
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Recording Execution: Trace Buffers

To record live circuit execution we use trace buffers:

Trace buffers require a lot of memory, and on-chip memory is scarce
• Can’t record entire circuit execution

Width x Depth tradeoff:
• The more signals we record, the shorter the execution trace

Cycle i
Cycle i+1
Cycle i+2
Cycle i+3
Cycle i+4

Signals of interest
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What’s New? Multithreaded HLS Circuits

User provides multithreaded source code (OpenCL, pthreads)

• Hardware modules execute in parallel

This is the future of HLS!

• Exploits parallelism of FPGA

• Altera OpenCL SDK, Xilinx SDAccel

Leads to more complicated in-system bugs:

• Thread communication/synchronization

• Race conditions 

• Deadlocks

• Performance issues (thread imbalance, starvation, etc.)
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Debugging Multithreaded HLS Circuits

Need to record long run-times to expose these bugs

• Must record fewer signals

• Can’t do GDB/Eclipse-like debug

• Need a debug framework for partial observability 

Solution: Tracepoint-based debugging

• Like a breakpoint, but instead of stopping it just adds to a log.

• One or more tracepoints per thread

• Optionally record variables at the tracepoint.

Thread 1 Thread 3Thread 2
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Tracepoint Log

Tracepoint data is provided to the user as a timeline:

We add debug circuitry to record tracepoints into trace buffers:

• Which tracepoint – ID 

• Time

• Variable values

Thread ID Cycle # Tracepoint Variables Logged

1 26452 main(): 113 mutex = 0

2 28591 foo(): 41 x = 7, y = 3

4 28037 bar(): 3 <None>

… … … …
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Basic Tracepoint Architecture

This is a direct extension of previous work, except only a subset of 
variables are recorded

Much more efficient than an ELA (Chipscope Pro, SignalTap II)

• Variable values are multiplexed

• Add buffer entries buffer only when needed

Global 
Timer

ID Var. Values Time
Thread i

Tracepointing Logic

Data
Signals

FSM State
Ena.

ID
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The architecture is duplicated to every thread in the system:

FPGA

ThreadThread

Thread

Thread

Thread

Trace 

Giving each thread their own trace buffer is not ideal:

• Each thread will fill buffers at different rates

• Hard to predict this before-hand

• Leads to wasted memory space
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Buffer Sharing

Round
Robin

ThreadThread

Thread

Thread

Thread

FPGA
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Effects of Multiple Trace Buffers

For multiple trace buffers, execution trace length is the minimum
captured in any buffer

Key: More buffer sharing = longer execution traces

Thread 1

Thread 2

Thread 3

Thread 4

Case 1: 8-entry buffer per thread
Case 2: Two 16-entry buffers
Case 3: One 32-entry buffer

Full-System Execution Trace

Execu
tio

n
 H

alted
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Buffer Sharing

To support buffer sharing, we need to handle:

1. Grouping threads

2. Arbitration

Round
Robin

ThreadThread

Thread

Thread

Thread

FPGA
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Grouping Threads

Thread 1 Thread 2 Thread 3

Thread 4 Thread 5

Want to group as aggressively as possible

• If group encounters too many tracepoints, memory will be overwhelmed

Need to know how often a thread will encounter tracepoints…
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Tracepoint Interval

Use Dijkstra’s algorithm on the CDFG

• Tracepoint Interval: minimum # of cycles between tracepoint hits

Interval = 4

T

Start End

T

T Tracepoint
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Grouping Threads

Thread 1

I = 2
Thread 2

I = 4
Thread 3

I = 6

Thread 4

I = 3
Thread 5

I = 9

Group such that: Interval ≥ n

• Allows for simple round robin arbitration

n=2
n=3
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Round-Robin Arbitration Circuit

Global Timer

Thread 1
I = 4

Ena.

ID

ID Var. Values Time

Thread 2
I = 6

Thread 3
I = 9

Ena.

C
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S1 S2

S3

Data
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Benefit of Buffer Sharing?

Metric: How much does buffer sharing increase the length of the 
recorded execution trace?

# 𝐶𝑦𝑐𝑙𝑒𝑠 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝒘𝒊𝒕𝒉 𝐵𝑢𝑓𝑓𝑒𝑟 𝑆ℎ𝑎𝑟𝑖𝑛𝑔

# 𝐶𝑦𝑐𝑙𝑒𝑠 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝐵𝑢𝑓𝑓𝑒𝑟𝑆ℎ𝑎𝑟𝑖𝑛𝑔

Longer trace length  Easier for designers to find multithreaded bugs
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# Tracepoints

2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

13.5 19.7

Max

Min

Q1

Q3

Median

1000 trials per configuration:

• Randomly create synthetic benchmark from CHStone

• LegUp to synthesize

• Group threads and measure improvement

8 threads, 1 tracepoint each: 4.1X increase to trace length
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Issues and Limitations

Works best with few tracepoints per thread

• More tracepoints = smaller tracepoint interval, less buffer sharing.

Buffer sharing only benefits heterogeneous threads (i.e. task-parallel)

• In a data-parallel system (e.g. OpenMP) all threads encounter tracepoints 
at the same rate

Task-parallel programs are more likely to need in-system debug

• Thread balancing, starvation, synchronization, etc.

Thread 3Thread 2Thread 1
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Area Overhead
Tracepointing Logic

Data 
Width

# Tracepoints

1 2 4 8 16

16 0 17 19 53 90

32 0 33 35 101 170

64 0 64 67 197 330

Data 
Width

# Threads

2 4 8 16 32

16 29 20 22 21 23

32 37 24 30 29 32

64 53 32 46 45 49

8 threads, with two 32-bit tracepoints each: 63 ALUTs/per thread.

Round-Robin Logic

Stratix IV ALUTs, per thread Stratix IV ALUTs, per thread

Th
rea

d

-
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Summary

• HLS may change the face of hardware design for FPGAs

• But, only if we have a suitable eco-system

• Need to find elusive bugs in multithreaded systems

• Tracepoint-based debugging architecture for multithreaded HLS circuits

• Run in-system, at-speed

• Familiar to software designers

• Round-robin architecture

• Record a longer execution trace: Find bugs faster
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Timing Considerations

Grouped threads may not be physically adjacent

• Long routing lengths will affect timing.

Pipeline the data signals

• Subtract the pipeline depth from time during offline re-ordering

Thread 1

Thread 3

Thread 2

FPGA
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Pipeline Model

Compute Unit 1

Compute Unit 2

Compute Unit 3

Compute Unit 4

T1

T2

T3

T4


