Using Round-Robin Tracepoints
to Debug Multithreaded HLS
Circuits on FPGAs

a place of mind

Jeffrey Goeders
Steve Wilton

What this talk is about...

How to allow designers to debug HLS circuits?

17 int quickSart{int =arr, int elements) {
18
19 int piv, bea[100], end[100];

In past work we developed a debugging tool: Y
* Software-like debugger .

* Interfaces with an HLS circuit @2 el =ekne
7 L = beal[;

* Only worked for single-threaded C code -
L <R L

What needs to change to support multithreaded code?

High-level synthesis

Source Code

& [Q— s —@

1. Faster development

2. Software designers target FPGAs

Software designers need a full ecosystem of tools
* Testing
* Debugging

* Optimization

In this talk, | am going to focus on debugging

Bugs in HLS systems

Kernel-level bugs Debug C code on
* Self-contained workstation (gdb). §
e Easyto reproduce £
(%]
HLS
|
l RTL Bugs & RTL Verification = Run C/RTL co-simulation _
. (@)
HLS Generated * Incorrect use of HLS on workstation. B
RTL tools 2
=
System-Level Bugs Debug on FPGA
e Bugs in interfaces
FPGA : :
UIls Bemersiee Dependent on (Requires observing o
Hardware interaction timings internals of FPGA) g
* Hard to reproduce ke

* Require long run-

times These are the bugs

we are targeting.

Other Other
Hardware Hardware

General Hardware Debug

Commercial ELA tools (SignalTap Il / Chipscope Pro):

Debug Tool:
Your - Chooses signals to trace

RTL - Debug circuitry added
Circuit

Can we use these tools to debug HLS circuits? No
1. Software designers? Beyond their expertise
2. Hardware designers? Forces them to give up higher-level abstraction

3. It’s very hard. HLS transformations means RTL doesn’t look like the C code

Previous Work

Execution Mode FPGA Replay :|

2| < 77 Q
|E}||ﬁ|‘\|>| |{}||{}|] 531 715
Function: main State: 6
qsort_labeled.c B FPGA | Vars | Tools = Design Stats
13
0 14} Auto-Refresh | Refresh Values |
15 void quickSort(int *arr, int elements) { .
16 int piv, beg[15], end[15],i=0,L, R, swap; | Variable Value
17 » —Globals—-
18 beg[0]=0; : ¥ main
19 end[0] = elements; i 20
20 while (i==0){ IS
@2 g beg
22 end
23 arr
24 piv = arr[L]; elements 20
25 while (L=R) { i 1
26 while (arr[R] >= piv && L < R) L 18
Trace Buffer 27 Ry : 9
28 '”'—<[R} — piv 53704
29 arr[L++] = arr[R];
H N - swa 20
(On-Chip Memory) B while@rll < ovast <R e v
L++;

%22 = getelementptr inbounds [15 x i32]* %end.i, i32 0, i32 %i.09.i, !dbg |78
%23 = add nsw i32 %19,-1, 'dbg !78
%24 = icmp slti32 %20, %23, !dbg 81

brid 054 labol 0 acobhosdocd leab i lobol 0004 1dba 104

| Gemm— -. . . ;
%21 = getelementptr inbounds [15 x i32]* %beg.i, i32 0, i32 %i.09.i, !dbg 174 ~]

-

* Software-like debugging experience
* Circuit runs at full speed (record, then retrieve) [6 }
* Only works with single-threaded C code

Recording Execution: Trace Buffers

To record live circuit execution we use trace buffers:

Signals, of interest

TS

Cyclei

Cycle i+1
Cycle i+2
Cycle i+3
Cycle i+4

Trace buffers require a lot of memory, and on-chip memory is scarce
* Can’t record entire circuit execution

Width x Depth tradeoff:
* The more signals we record, the shorter the execution trace

What’s New? Multithreaded HLS Circuits

User provides multithreaded source code (OpenCL, pthreads)

* Hardware modules execute in parallel

This is the future of HLS!
* Exploits parallelism of FPGA
* Altera OpenCL SDK, Xilinx SDAccel

Leads to more complicated in-system bugs:
* Thread communication/synchronization
* Race conditions
* Deadlocks

* Performance issues (thread imbalance, starvation, etc.)

Debugging Multithreaded HLS Circuits

Need to record long run-times to expose these bugs
* Must record fewer signals
* Can’t do GDB/Eclipse-like debug
* Need a debug framework for partial observability

Solution: Tracepoint-based debugging
* Like a breakpoint, but instead of stopping it just adds to a log.

* One or more tracepoints per thread
* Optionally record variables at the tracepoint.

4 Thread 1 A 4 Thread 2 A 4 Thread 3 A

\ /b ~
/ o
O- N >‘)/ N LOJ

Tracepoint Log

Tracepoint data is provided to the user as a timeline:

Thread ID Cycle# Tracepoint Variables Logged
1 26452 main(): 113 mutex = 0

2 28591 foo(): 41 x =7, vy =3
4 28037 bar(): 3 <None>

We add debug circuitry to record tracepoints into trace buffers:
* Which tracepoint—ID
* Time

* Variable values

Basic Tracepoint Architecture

Global
Tracepointing Logic Timer
Data ! l l
Signals > ID | Var. Values | Time
Thread i
FSM State S
) Ena.

This is a direct extension of previous work, except only a subset of
variables are recorded

Much more efficient than an ELA (Chipscope Pro, SignalTap 1)

(1)

* Variable values are multiplexed
* Add buffer entries buffer only when needed

The architecture is duplicated to every thread in the system:

I \ 4 I A 4 I \ 4
Thread Thread Thread
I — I - Trace
Thread Thread
FPGA

Giving each thread their own trace buffer is not ideal:
* Each thread will fill buffers at different rates
* Hard to predict this before-hand
* Leads to wasted memory space

Buffer Sharing

Round
Robin
Thread Thread |[Thread
Thread |[Threa
FPGA

Effects of Multiple Trace Buffers

Thread 1 1 m
_u . &
Thread2 . . %
Thread 4 . - - - . %
T o
Full-System Execution Trace
Case 1: 8-entry buffer per thread <
Case 2: Two 16-entry buffers <
Case 3: One 32-entry buffer <

For multiple trace buffers, execution trace length is the minimum
captured in any buffer

Key: More buffer sharing = longer execution traces

Buffer Sharing

Round
Robin

Thread Thread |[Thread

O

Thread |[Thread

FPGA

To support buffer sharing, we need to handle:
1. Grouping threads
2. Arbitration

Grouping Threads

/
‘ Thread 1

Thread 2

Thread 4 Thread 5

Want to group as aggressively as possible

* If group encounters too many tracepoints, memory will be overwhelmed (1 J

Need to know how often a thread will encounter tracepoints...

Tracepoint Interval

Use Dijkstra’s algorithm on the CDFG

* Tracepoint Interval: minimum # of cycles between tracepoint hits

@ Tracepoint

Start End

Interval = 4

Thread 1

[=2

Grouping Threads

Thread 2
|=4

Thread 4

[=3

Thread 3

=6

Thread 5

=9

Group such that: Interval 2 n

* Allows for simple round robin arbitration

Round-Robin Arbitration Circuit

\ 4

— Global Timer X
ET Data
Thread 1 ’ 5 —"
=4 o_||5 — } }
D

> |D | Var. Values | Time

Thread 2
|=6

L4 A
4
J91Uuno)
L4 4 lw I y
|

\ 4

Thread 3
/I=9

\ 4

\A A/
)
y
121un0)
m)_/
>
oY

Benefit of Buffer Sharing?

Metric: How much does buffer sharing increase the length of the
recorded execution trace?

Cycles recorded with Buf fer Sharing
Cycles recorded without Buf ferSharing

Longer trace length = Easier for designers to find multithreaded bugs

N0 X 13.5 19.7

9.0X
£ 80X
oo
E.C’ 7.0 X
Y 60X I
©
= 50X
(@)
o 40X I
@ 3.0X l
PR ITTTIRALS PRNNAL T IRERI FIRARL T
MLLIYY H N o
W11 -1 11 - T[11 T R
0.0X
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
Tracepoints
2 Threads 4 Threads 8 Threads 16 Threads 32 Threads
. . . Max
1000 trials per configuration: Q3
* Randomly create synthetic benchmark from CHStone Median
* LegUp to synthesize a1
* Group threads and measure improvement
Min

8 threads, 1 tracepoint each: 4.1X increase to trace length

Issues and Limitations

Works best with few tracepoints per thread

* More tracepoints = smaller tracepoint interval, less buffer sharing.

Buffer sharing only benefits heterogeneous threads (i.e. task-parallel)

* In a data-parallel system (e.g. OpenMP) all threads encounter tracepoints
at the same rate

Thread 1 Thread 2 Thread 3
O‘\ Q‘\ O‘\

\) \) \)

Task-parallel programs are more likely to need in-system debug

* Thread balancing, starvation, synchronization, etc.

Area Overhead Round-Robin Logic

Tracepointing Logic - ﬁ

S Y

§ »

Q. > X
Data # Tracepoints Data # Threads
Width ™ T2 [4 | 8 | 16 Width =, 1 4 | 8 | 16 | 32
16 O 17| 19| 53| 90 16 29| 20| 22| 21| 23
32 0| 33| 35101 170 32 37| 24, 30, 29| 32
64 0| 64| 67| 197 330 64 53| 32| 46| 45, 49
Stratix IV ALUTs, per thread Stratix IV ALUTs, per thread

23
8 threads, with two 32-bit tracepoints each: 63 ALUTs/per thread. [J

Summary

* HLS may change the face of hardware design for FPGAs
* But, only if we have a suitable eco-system

* Need to find elusive bugs in multithreaded systems

* Tracepoint-based debugging architecture for multithreaded HLS circuits
* Run in-system, at-speed

* Familiar to software designers

* Round-robin architecture
* Record a longer execution trace: Find bugs faster

Timing Considerations

Grouped threads may not be physically adjacent

* Long routing lengths will affect timing.

Pipeline the data signals

* Subtract the pipeline depth from time during offline re-ordering

FPGA
Thread 1 Thread 2

N
5

]

Thread 3

Pipeline Model

T4

- Compute Unit 1 - Compute Unit 3
- Compute Unit 2 - Compute Unit 4

