
1

Using Round-Robin Tracepoints
to Debug Multithreaded HLS
Circuits on FPGAs

Jeffrey Goeders
Steve Wilton

2

What this talk is about…

How to allow designers to debug HLS circuits?

In past work we developed a debugging tool:
• Software-like debugger
• Interfaces with an HLS circuit
• Only worked for single-threaded C code

What needs to change to support multithreaded code?

3

High-level synthesis

1. Faster development

2. Software designers target FPGAs

Software designers need a full ecosystem of tools

• Testing

• Debugging

• Optimization

• ….

In this talk, I am going to focus on debugging

HLS

Source Code

.c

4H
ar

d
w

ar
e

Bugs in HLS systems

main() {
int i;

}

HLS Generated
RTL

HLS

FPGA
HLS Generated

Hardware

Other
Hardware

Other
Hardware

I/O Devices

These are the bugs
we are targeting.

Kernel-level bugs
• Self-contained
• Easy to reproduce

Debug C code on
workstation (gdb).

RTL Bugs & RTL Verification
• Incorrect use of HLS

tools

Run C/RTL co-simulation
on workstation.

System-Level Bugs
• Bugs in interfaces
• Dependent on

interaction timings
• Hard to reproduce
• Require long run-

times

Debug on FPGA

(Requires observing
internals of FPGA)

So
ft

w
ar

e
Si

m
u

la
ti

o
n

5

General Hardware Debug

Commercial ELA tools (SignalTap II / Chipscope Pro):

Can we use these tools to debug HLS circuits? No

1. Software designers? Beyond their expertise

2. Hardware designers? Forces them to give up higher-level abstraction

3. It’s very hard. HLS transformations means RTL doesn’t look like the C code

Your
RTL

Circuit

Debug Tool:
- Chooses signals to trace
- Debug circuitry added

Run

6

Previous Work

• Software-like debugging experience

• Circuit runs at full speed (record, then retrieve)

• Only works with single-threaded C code

HLS

Trace Buffer

(On-Chip Memory)

7

Recording Execution: Trace Buffers

To record live circuit execution we use trace buffers:

Trace buffers require a lot of memory, and on-chip memory is scarce
• Can’t record entire circuit execution

Width x Depth tradeoff:
• The more signals we record, the shorter the execution trace

Cycle i
Cycle i+1
Cycle i+2
Cycle i+3
Cycle i+4

Signals of interest

8

What’s New? Multithreaded HLS Circuits

User provides multithreaded source code (OpenCL, pthreads)

• Hardware modules execute in parallel

This is the future of HLS!

• Exploits parallelism of FPGA

• Altera OpenCL SDK, Xilinx SDAccel

Leads to more complicated in-system bugs:

• Thread communication/synchronization

• Race conditions

• Deadlocks

• Performance issues (thread imbalance, starvation, etc.)

9

Debugging Multithreaded HLS Circuits

Need to record long run-times to expose these bugs

• Must record fewer signals

• Can’t do GDB/Eclipse-like debug

• Need a debug framework for partial observability

Solution: Tracepoint-based debugging

• Like a breakpoint, but instead of stopping it just adds to a log.

• One or more tracepoints per thread

• Optionally record variables at the tracepoint.

Thread 1 Thread 3Thread 2

10

Tracepoint Log

Tracepoint data is provided to the user as a timeline:

We add debug circuitry to record tracepoints into trace buffers:

• Which tracepoint – ID

• Time

• Variable values

Thread ID Cycle # Tracepoint Variables Logged

1 26452 main(): 113 mutex = 0

2 28591 foo(): 41 x = 7, y = 3

4 28037 bar(): 3 <None>

… … … …

11

Basic Tracepoint Architecture

This is a direct extension of previous work, except only a subset of
variables are recorded

Much more efficient than an ELA (Chipscope Pro, SignalTap II)

• Variable values are multiplexed

• Add buffer entries buffer only when needed

Global
Timer

ID Var. Values Time
Thread i

Tracepointing Logic

Data
Signals

FSM State
Ena.

ID

12

The architecture is duplicated to every thread in the system:

FPGA

ThreadThread

Thread

Thread

Thread

Trace

Giving each thread their own trace buffer is not ideal:

• Each thread will fill buffers at different rates

• Hard to predict this before-hand

• Leads to wasted memory space

13

Buffer Sharing

Round
Robin

ThreadThread

Thread

Thread

Thread

FPGA

14

Effects of Multiple Trace Buffers

For multiple trace buffers, execution trace length is the minimum
captured in any buffer

Key: More buffer sharing = longer execution traces

Thread 1

Thread 2

Thread 3

Thread 4

Case 1: 8-entry buffer per thread
Case 2: Two 16-entry buffers
Case 3: One 32-entry buffer

Full-System Execution Trace

Execu
tio

n
 H

alted

15

Buffer Sharing

To support buffer sharing, we need to handle:

1. Grouping threads

2. Arbitration

Round
Robin

ThreadThread

Thread

Thread

Thread

FPGA

16

Grouping Threads

Thread 1 Thread 2 Thread 3

Thread 4 Thread 5

Want to group as aggressively as possible

• If group encounters too many tracepoints, memory will be overwhelmed

Need to know how often a thread will encounter tracepoints…

17

Tracepoint Interval

Use Dijkstra’s algorithm on the CDFG

• Tracepoint Interval: minimum # of cycles between tracepoint hits

Interval = 4

T

Start End

T

T Tracepoint

18

Grouping Threads

Thread 1

I = 2
Thread 2

I = 4
Thread 3

I = 6

Thread 4

I = 3
Thread 5

I = 9

Group such that: Interval ≥ n

• Allows for simple round robin arbitration

n=2
n=3

19

Round-Robin Arbitration Circuit

Global Timer

Thread 1
I = 4

Ena.

ID

ID Var. Values Time

Thread 2
I = 6

Thread 3
I = 9

Ena.

C
o

u
n

ter
C

o
u

n
ter

C
o

u
n

ter

X

-

S1 S2

S3

Data

20

Benefit of Buffer Sharing?

Metric: How much does buffer sharing increase the length of the
recorded execution trace?

𝐶𝑦𝑐𝑙𝑒𝑠 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝒘𝒊𝒕𝒉 𝐵𝑢𝑓𝑓𝑒𝑟 𝑆ℎ𝑎𝑟𝑖𝑛𝑔

𝐶𝑦𝑐𝑙𝑒𝑠 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝐵𝑢𝑓𝑓𝑒𝑟𝑆ℎ𝑎𝑟𝑖𝑛𝑔

Longer trace length  Easier for designers to find multithreaded bugs

21

0.0 X

1.0 X

2.0 X

3.0 X

4.0 X

5.0 X

6.0 X

7.0 X

8.0 X

9.0 X

10.0 X

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

In
cr

ea
se

 t
o

 T
ra

ce
 L

en
gt

h

Tracepoints

2 Threads 4 Threads 8 Threads 16 Threads 32 Threads

13.5 19.7

Max

Min

Q1

Q3

Median

1000 trials per configuration:

• Randomly create synthetic benchmark from CHStone

• LegUp to synthesize

• Group threads and measure improvement

8 threads, 1 tracepoint each: 4.1X increase to trace length

22

Issues and Limitations

Works best with few tracepoints per thread

• More tracepoints = smaller tracepoint interval, less buffer sharing.

Buffer sharing only benefits heterogeneous threads (i.e. task-parallel)

• In a data-parallel system (e.g. OpenMP) all threads encounter tracepoints
at the same rate

Task-parallel programs are more likely to need in-system debug

• Thread balancing, starvation, synchronization, etc.

Thread 3Thread 2Thread 1

23

Area Overhead
Tracepointing Logic

Data
Width

Tracepoints

1 2 4 8 16

16 0 17 19 53 90

32 0 33 35 101 170

64 0 64 67 197 330

Data
Width

Threads

2 4 8 16 32

16 29 20 22 21 23

32 37 24 30 29 32

64 53 32 46 45 49

8 threads, with two 32-bit tracepoints each: 63 ALUTs/per thread.

Round-Robin Logic

Stratix IV ALUTs, per thread Stratix IV ALUTs, per thread

Th
rea

d

-

24

Summary

• HLS may change the face of hardware design for FPGAs

• But, only if we have a suitable eco-system

• Need to find elusive bugs in multithreaded systems

• Tracepoint-based debugging architecture for multithreaded HLS circuits

• Run in-system, at-speed

• Familiar to software designers

• Round-robin architecture

• Record a longer execution trace: Find bugs faster

25

Timing Considerations

Grouped threads may not be physically adjacent

• Long routing lengths will affect timing.

Pipeline the data signals

• Subtract the pipeline depth from time during offline re-ordering

Thread 1

Thread 3

Thread 2

FPGA

26

Pipeline Model

Compute Unit 1

Compute Unit 2

Compute Unit 3

Compute Unit 4

T1

T2

T3

T4

