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Motivation (latency)

How to beat other people to the money (latency)

» Low latency trading looks to trade in transient situations where market
equilibrium disturbed

- 1ms reduction in latency can translate to $100M per year

Market

Trader Exchange
Data |

Trader

» Latency also important to: prevent blackouts (cascading faults), turn off
machine before it damages itself, etc

Information Week: Wall Street's Quest To Process
Data At The Speed Of Light
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Latency infrastructure already available

Exablaze Low-Latency Products

e —— ev e WES S

ExaLINK Fusion 48 SFP+ port layer ExaNIC X10 typical raw frame
2 switch for replicating data typical 5 latency 60 bytes 780 ns

ns fanout, 95 ns aggregation, 110 ns

layer 2 switch

What we can’t do: ML with this

Xilinx Ultrascale FPGA, QDR SRAM,
type of latency

ARM processor

Source: exablaze.com
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Online Kernel Methods

Examples are KLMS and KRLS

» Traditional ML algorithms batch » Our approach: online algorithms
based - Incremental, inexpensive state
- Several passes through data update based on new data
- Requires storage of input data - Single pass through the data
- Not suitable for massive datasets - Can be high throughput, low latency

Universal

Streaming > Prediction

inputs x, Approximator

+

Modify 5
N weights )
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Obstacle to Pipelining

Dependency Problem

Cannot process
X; until we update weights
from {x;_4,y;.1}

Streaming \lJnivgrse.I > Prediction
inputs x Approximetor
+
Modify 3
S weights e

» This work
- Implementation of an online machine learning scheme: NORMA
- Resolve read-after-write dependencies through braiding
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Datapath for NORMA

New Example

D
X Weights flz) = Z aik(z, d;)
i } = =t

d —| k() — *a

d2 —P K‘,(-,-) —Ppp| XD

2. = f(x)

Dictionary
AN
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Naive Online regularised Risk Minimization Algorithm

» Finds Dictionary d;, and a; (weights)

» Minimise predictive error (R, ,) by taking a step in direction of gradient

ft+1 — ft ntaf inst A[f, Lt41, yt+1]

f=rt
» Can be used for classification, regression, novelty detection

» Update for novelty detection

(Qa;,0,p +nv) if f(x¢) > p Add x,,, to dictionary
(Qaj,m, p—n(1 — v)) otherwise

(Ck,', O, ,0) — {




=) SYDNEY NORMA Update (Case 1)

(a7, r. p) = (i, 0,p +nv) if f(x) > p  (Add x, to dictionary)
hanp (Qaj,m, p—n(1 — v)) otherwise

New Example

Xt+4+1 Weights
l /'/R
( Xt —» k() P *or
di —»{ () —» *Qay

> = f(xe+1)

Dictionary
N

dp_1 —» k(-, ) —»*Qap_1




=) SYDNEY NORMA Update (Case 2)

(it p) = (Q0;,0,p+nv) if f(xt) > p (Add x, to dictionary)
i» Xt (Qaj,m, p—n(1 — v)) otherwise

New Example

Weights

Xt+1 j /-/\

dy —» K(" ) > +Qay

> = f(xe41)

Dictionary
N

dD —P K/(', .) P *QaD
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Properties of NORMA

» NORMA is a sliding window algorithm

- If new dictionary entry added [d,,"--dp] — [X,,d4,""-dp_4]

- Weight update is just a decay o, — Qaq,

- Update cost is small compared to computing f(x,)

> Is this really true?

Cannot process
X; until we update weights
from {X._,Y;.1}

Streaming — IR Prediction
inputs X, {\pproximator
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» Recall carry select adder

- implement both cases in parallel and select output

A3/B3 A1/B1

0 (Cin)

Source: Wikipedia
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Braiding

D
f(xt+1) =) ai"‘?(Xt+1, di)
i=1

Use the previous dictionary for x; denoted d;
D—1 A

f(xt+1) = >, Q&ik(x¢y1,d;)+something
i=1

if x; is added then this term = ax, k(X¢+1, X¢)
if x; is not added then this term = Qa/pr(x¢11, dAD)
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D-1

Z d\i’{'(xH—la 8/) QADK;(XH_]_, dAD)
i=1

Braiding Datapath

.

Y

Q

¥\

+

v

/

_|_

Mux [«

!

\4 ’/ft 1(xt) < p

fe(Xes1)

New Term

Partial Sum
Old Term

New Term Old Term
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( fO if Xt4+1—p is not added

>QP_1axt+1_pn(xt+1,xt+1_p) otherwise
0 if xt42—p is not added

) .
q < \QP Qxyp_, K(Xe41, Xe42—p) Otherwise

0 if x¢ is not added
Qix, (Xt 41, X¢) otherwise
D—q

+ > QPGik(xes1,d;)
i=D—p+1

Generalised to p cycles

Pipeline (p cycles)

m; = k(d;, x;)
(k cycles)
I

ft(Xt+1) =

D
> aijmj (s cycles)

i=1
v
[ a(fe(xe41)) }

(1 cycle)
> |
[
> |
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Implementation

» Implemented in Chisel

» On XC7VX485T- 2FFG1761C achieves ~133 MHz

» Area O(FDB?) (F=dimensionality of input vector), time complexity O(FD)
» Speedup 500x compared with single core CPU i7-4510U (8.10 fixed)

Frequency (MHz) 133 138

DSPs (/2,800) 309 514 911 1,679 2,556
Slices (/759,000) 4,615 8,194 14,663 29,113 46,443
Latency (cycles) 10 11 12 12 13
Speedup (x) 47 91 178 344 509

Latency reduction (x) 4.69 8.30 14.9 28.7 39.2
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Comparison of Architectures

» Core with input vector F=8 and dictionary size D=16

Latency | T.put | Latency | T.put
Cycles Cycles nS nS

Vector Single 1,699 1,699
KNLMS
Pipelined Single 314 207 1 659 3.2
KNLMS
Braided 8.10 113 10 1 89 8.8

NORMA
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Summary

» Braiding: rearrangement of a sliding window algorithm for hardware
implementations

- NORMA used but other ML algorithms possible
» Compared with pipelined KNLMS,
- 20x lower latency at 1/3 of the throughput

» Open source (GPLv2): github.com/da-steve101/chisel-pipelined-olk
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