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Markov chain Monte Carlo (MCMC)  
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• MCMC is a general purpose technique for sampling 

from complex probabilistic models; 

 

• In high dimensional space, sampling is a key step for 

(a) modelling (simulation, synthesis, verification) 

    (b) learning (estimating parameters) 

    (c) estimation (Monte Carlo integration, importance sampling) 

 

• MCMC has been considered to be one of the top ten 

most important algorithms ever. 

 



Example: Monte Carlo Integration 

o In scientific computing, one often needs to compute the 

integral in very high dimensional space. 

 

  

o Many functions, equations, and distributions cannot be 

integrated analytically. For example:  

 

 

o If We can draw samples from p(x) 

 

 

o We can easily estimate the integral from 
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• MCMC outputs a sequence of samples that are slightly 

dependent from distribution, by constructing a discrete 

time Markov chain; 

 

 

Markov chain Monte Carlo (MCMC)  
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MCMC Algorithm 
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Motivation 
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MCMC needs 20 days to sample 

• Big Data • Complex Models 

Complex / “intractable” likelihoods 

in high dimensionalities  



Custom Precision Data Sub-sampling 

• Previous solutions to big data MCMC applications: 

Motivation 

Biased Sampler 
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+ 

An Exact MCMC: FIREFLY MC 

Data Sub-sampling Custom Precision Unbiased Sampler 
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• A mixed precision MCMC accelerator with 
unbiased samples, taking into account the unique 
custom precision capabilities of FPGAs; 

• A novel architecture which maps the algorithm to 
an FPGA;  

• Evaluation using two case studies with varying 
complexity, achieving 4.21x and 4.76x speedups 
over double-precision designs;  

Contribution 
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Introduction: HOW IT WORKS 
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Assuming we have: 

1. Target Distribution: 2. Likelihood function: 

Compute all N likelihoods at every iteration is a bottleneck!  

3. Assume each term can be bounded by a lower bound: 

4. For each one, we introduce an auxiliary binary variable zn ∈ {0,1}: 

5. Augment the posterior with these N vars: 
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Introduction: HOW IT WORKS 
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We simulate the Markov 

chain on the zn space: 

• zn=0  => no likelihood computed 

• zn=1  => likelihoods computed 
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• we propose to implement  these likelihood terms under 

custom precision approximations as their lower bound 

functions, in order to get a tight bound; 

 

• To guarantee a lower bound, we use the tool Gappa++ 

to get the errors between two precision values, then 

subtracting the error from custom precision value: 

( ) ( )n nB LC   

Introduction: HOW IT COMBINED WITH CUSTOM PRECISION 
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( ) ~ ( | )n nLD p x  : double precision likelihood 

( ) ~ ( | )n nLC p x  : custom precision likelihood 

 : max absolute difference of the two precision values 



Firefly Algorithm 

1. Choose a starting value θ(0) ;   

2. At iteration t, propose a candidate θ∗ from a jumping distribution; 

3. For each data point n:  

        if zn=1 then 

 likelihood computation: L(θ∗) *= LDn(θ∗) - LCn(θ∗); 
 zn update: zn~Bernoulli(1-LCn/LDn); 

        if zn=0 then 

 likelihood computation: L(θ∗) *= LCn(θ∗); 
 partial zn update:  

  if (n%Fraction == 0)  zn~Bernoulli(1-LCn/LDn); 

  else zn=0; //keep unchanged 

4. Compute accept ratio a= L(θ∗)/L(θ(t-1) ); 

5. Accept θ∗ as θ(t) with probability min(a,1); 

6. Repeat steps 2-5 M times to get M draws. 
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Case Studies 

 Example: Logistic Regression 

o a two-class classification problem; 

 Synthetic data set 

o 3-dimension of the parameters; 

o 3*500-dimension of the data set; 

 MNIST Classification 

o to classify handwritten digits in the large MNIST 

database; 

o 13-dimension of the parameters 

o 2000-dimension of the data points 
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Results: MCMC Samples 

Synthetic example 
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Results: MCMC Samples 

MNIST Problem 
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Results: Resources 

MNIST Problem 
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Results: Sampling Efficiency Speedups 
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Conclusions 

• Firefly MC Algorithm 

 mixed precision design; 

 unbiased samples guaranteed; 

 

• 4x-5x speedups over regular MCMC design; 

 

• Custom precision values used as lower bound 

 not application specific; 

 a very tight bound; 
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Thanks 

QUESTIONS? 
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