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« MCMC is a general purpose technique for sampling
from complex probabilistic models;

 In high dimensional space, sampling is a key step for
(a) modelling (simulation, synthesis, verification)

(b) learning (estimating parameters)
(c) estimation (Monte Carlo integration, importance sampling)

« MCMC has been considered to be one of the top ten
most important algorithms ever.
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In scientific computing, one often needs to compute the
integral in very high dimensional space.

1) = | () p(x)dx

Many functions, equations, and distributions cannot be
integrated analytically. For example:

p(x)=e"
If We can draw samples from p(x)

Xy XyyXgyeees Xy ~ P(X)

We can easily estimate the integral from

1(f)= %Zf(xi)
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« MCMC outputs a sequence of samples that are slightly
dependent from distribution, by constructing a discrete
time Markov chain;
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Input: initial setting fp, number of ﬂmple% N,
Output: parameter anmplex B;i=1,...,Ng:

1: for 7 =1 to N, do
Propose 6" ~ 6;_1+Normal(0, s>Ip); // a random walk
proposal with_step size s.

(0 [{zn}ny)
0 [ {rn} )
4. u ~ Uniform(U,T7;

5 if © < a then
6 0, =6,

7:  else

8: 0, =6,_1;
9
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3 Compute a =

end if
- end for
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* Big Data  Complex Models

MCMC needs 20 days to sample Complex / “intractable” likelihoods
in high dimensionalities
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* Previous solutions to big data MCMC applications:
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Data Sub-sampling Custom Precision

Biased Sampler
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An Exact MCMC: FIREFLY MC
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Data Sub-sampling Custom Precision Unbiased Sampler
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» A mixed precision MCMC accelerator with
unbiased samples, taking into account the unique
custom precision capabilities of FPGAS;

* A novel architecture which maps the algorithm to
an FPGA;

» Evaluation using two case studies with varying
complexity, achieving 4.21x and 4.76x speedups
over double-precision designs;
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Introduction: HOW IT WORKS

Assuming we have:

1. Target Distribution: 2. Likelihood function:
N N
p@1{x,},2) < pD] | p(x,16) L(0)=p(x,0) LO=]]L©®
n=1 n=l1

Compute all N likelihoods at every iteration is a bottleneck!

3. Assume each term can be bounded by a lower bound:
0<B (0)<L ()

4. For each one, we introduce an auxiliary binary variable zn € {0,1}:
z ~ Bernoulli{l-B (0)/ L (6}

5. Augment the posterior with these N vars:

p(0.{z, 35 1{x, 3,00 o< p(O)] | p(x, |0)p(2, | x,,0) .
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Introduction: HOW IT WORKS

We simulate the Markov
chain on the z, space:

L) =]]L©0)-BO]] 5,0

 z,=0 =>no likelihood computed
 z,=1 =>likelihoods computed
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Introduction: HOW IT COMBINED WITH CUSTOM PRECISION

e we propose to implement these likelihood terms under
custom precision approximations as their lower bound
functions, in order to get a tight bound;

« To guarantee a lower bound, we use the tool Gappa++
to get the errors between two precision values, then
subtracting the error from custom precision value:

LD (6)~ p(x,|0) : double precision likelihood
LC (0) ~ p(x,|0) :custom precision likelihood

& . max absolute difference of the two precision values

B (0)=LC (0)-¢
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Firefly Algorithm

1. Choose a starting value 6(0) ;

3. For each data point n:
if z.=1 then
likelihood computation: L(6*) *= LDn(0x) - LCn(0+*);
z,, update: z,~Bernoulli(1-LCn/LDn);
if z,=0 then
likelihood computation: L(0x) *= LCn(6%);
partial z, update:
if (N%Fraction == 0) z,~Bernoulli(1-LCn/LDn);
else z,=0; //keep unchanged
4. Compute accept ratio a= L(0*)/L(6(t-1) );
5. Accept Bx as 8(t) with probability min(a,1);
6. Repeat steps 2-5 M times to get M draws.

2. At iteration t, propose a candidate 8+ from a jumping distribution;
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Case Studies

0 Example: Logistic Regression
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Sampling of MNIST

o}
o atwo-class classification problem,;
O Synthetic data set II
MEEO
o 3-dimension of the parameters; E

o 3*500-dimension of the data set;

(J MNIST Classification

o to classify handwritten digits in the large MNIST
database;
o 13-dimension of the parameters

o 2000-dimension of the data points
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Synthetic example
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15



Imperial College

London

-0.15

MCMC samples estimate

MNIST Problem

—+—firefly MCMC
——custom MCMC
—e—regular MCMC
~%7bright data percentage

regular
MCMC

110

i
=k
]

i
"y
=

i
=k
=

5 7 9 11 13 15 19 23
Mumber of significand bits

10

|
-

e ra
Percentage of the brignt data for firefly MCMC (%)

1
[-%

i
=

h

i
=

16



Imperial College
London

MNIST Problem
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Results: Sampling Efficiency Speedups
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* Firefly MC Algorithm
v mixed precision design;
v unbiased samples guaranteed:;

« 4x-5x speedups over regular MCMC design;

» Custom precision values used as lower bound
v' not application specific;
v" a very tight bound;
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Thanks

QUESTIONS?

20



