
An Exact MCMC Accelerator
Under Custom Precision

Shuanglong Liu

Imperial College London

FPT 2015, Queenstown

09 Dec 2015

Markov chain Monte Carlo (MCMC)

2

• MCMC is a general purpose technique for sampling

from complex probabilistic models;

• In high dimensional space, sampling is a key step for

(a) modelling (simulation, synthesis, verification)

 (b) learning (estimating parameters)

 (c) estimation (Monte Carlo integration, importance sampling)

• MCMC has been considered to be one of the top ten

most important algorithms ever.

Example: Monte Carlo Integration

o In scientific computing, one often needs to compute the

integral in very high dimensional space.

o Many functions, equations, and distributions cannot be

integrated analytically. For example:

o If We can draw samples from p(x)

o We can easily estimate the integral from

dxxpxffI )()()(

2

() xp x e

1

1
() ()

N

i

i

I f f x
N 

 

1 2 3, , ,..., ~ ()Nx x x x p x

3

• MCMC outputs a sequence of samples that are slightly

dependent from distribution, by constructing a discrete

time Markov chain;

Markov chain Monte Carlo (MCMC)

4

MCMC Algorithm

5

Motivation

6

MCMC needs 20 days to sample

• Big Data • Complex Models

Complex / “intractable” likelihoods

in high dimensionalities

Custom Precision Data Sub-sampling

• Previous solutions to big data MCMC applications:

Motivation

Biased Sampler
7

+

An Exact MCMC: FIREFLY MC

Data Sub-sampling Custom Precision Unbiased Sampler

8

• A mixed precision MCMC accelerator with
unbiased samples, taking into account the unique
custom precision capabilities of FPGAs;

• A novel architecture which maps the algorithm to
an FPGA;

• Evaluation using two case studies with varying
complexity, achieving 4.21x and 4.76x speedups
over double-precision designs;

Contribution

9

Introduction: HOW IT WORKS

1

1

(|{ }) () (|)
N

N

n n n

n

p x p p x  



  () (|)n nL p x 

0 () ()n nB L  

~ {1 () / (}n n nz Bernoulli B L 

1

() ()
N

n

n

L L 




Assuming we have:

1. Target Distribution: 2. Likelihood function:

Compute all N likelihoods at every iteration is a bottleneck!

3. Assume each term can be bounded by a lower bound:

4. For each one, we introduce an auxiliary binary variable zn ∈ {0,1}:

5. Augment the posterior with these N vars:

1 1

1

(,{ } |{ }) () (|) (| ,)
N

N N

n n n n n n n

n

p z x p p x p z x    



 
10

Introduction: HOW IT WORKS

01

() () () ()
ji
zz

i i j

i j

L L B B   


  

We simulate the Markov

chain on the zn space:

• zn=0 => no likelihood computed

• zn=1 => likelihoods computed

11

• we propose to implement these likelihood terms under

custom precision approximations as their lower bound

functions, in order to get a tight bound;

• To guarantee a lower bound, we use the tool Gappa++

to get the errors between two precision values, then

subtracting the error from custom precision value:

() ()n nB LC   

Introduction: HOW IT COMBINED WITH CUSTOM PRECISION

12

() ~ (|)n nLD p x  : double precision likelihood

() ~ (|)n nLC p x  : custom precision likelihood

 : max absolute difference of the two precision values

Firefly Algorithm

1. Choose a starting value θ(0) ;

2. At iteration t, propose a candidate θ∗ from a jumping distribution;

3. For each data point n:

 if zn=1 then

 likelihood computation: L(θ∗) *= LDn(θ∗) - LCn(θ∗);
 zn update: zn~Bernoulli(1-LCn/LDn);

 if zn=0 then

 likelihood computation: L(θ∗) *= LCn(θ∗);
 partial zn update:

 if (n%Fraction == 0) zn~Bernoulli(1-LCn/LDn);

 else zn=0; //keep unchanged

4. Compute accept ratio a= L(θ∗)/L(θ(t-1));

5. Accept θ∗ as θ(t) with probability min(a,1);

6. Repeat steps 2-5 M times to get M draws.

13

Case Studies

 Example: Logistic Regression

o a two-class classification problem;

 Synthetic data set

o 3-dimension of the parameters;

o 3*500-dimension of the data set;

 MNIST Classification

o to classify handwritten digits in the large MNIST

database;

o 13-dimension of the parameters

o 2000-dimension of the data points

14

Results: MCMC Samples

Synthetic example

15

Results: MCMC Samples

MNIST Problem

16

Results: Resources

MNIST Problem

17

Results: Sampling Efficiency Speedups

18

Conclusions

• Firefly MC Algorithm

 mixed precision design;

 unbiased samples guaranteed;

• 4x-5x speedups over regular MCMC design;

• Custom precision values used as lower bound

 not application specific;

 a very tight bound;

19

Thanks

QUESTIONS?

20

